2020年の家庭分野における二酸化炭素削減可能性に関する調査

報告書
2010年11月
産業部門はこれまで、経団連の環境自主行動計画を中心にCO2削減に努めてきており、こうした努力は産業部門排出量の低減に大きな成果を上げてきた。さらに経団連は、2020年に向け、環境自主行動計画に続く新たな計画として「低炭素社会実行計画」を策定し、これまでに培った世界最高水準の優れた技術力をさらに強化し、今後も温室効果ガス排出量の削減に最大限の努力を継続することとなっている。

一方、民生部門では近年の排出量の伸びが著しく、民主党政権が掲げる「主要国の参加による公平かつ実効性のある枠組みと意欲的な目標を前提とし、2020年に1990年比温室効果ガス排出量25％削減」という高い中期目標達成を目指す上では、この部門での排出削減が重要な課題となっている。21世紀政策研究所は地球温暖化問題について検討を重ねてきたが、民生部門での対応の重要性に鑑み、今般、特に家庭用エネルギー消費に由来するCO2排出削減について調査を行った。本書はその調査結果であり、2020年をターゲットとして、具体的な削減メニューとその削減効果、必要金額を検討し、家庭部門で実際に実施可能な対策とその際のCO2削減量および課題などを具体的に考察した。

調査は、㈱住環境計画研究所に依頼して実施した。原油価格や技術進展度合いについてシナリオを分け、また、住居形態や家族類型による分類をし、より現実的な想定となるよう取りまとめられている。

本書が、わが国における今後の温暖化対策のあり方を考える上で、参考となれば幸いである。

※本報告書は21世紀政策研究所の研究成果であり、日本経団連の見解を示すものではない。
目次

Executive Summary ..1

第 1 章 調査概要..6
 1.1 調査の構成..6
 1.2 調査内容 ..6
 1.2.1 将来予測モデル ..6
 1.2.2 シナリオの想定による将来予測 ..9
 1.2.3 必要な投資金額と家庭の負担に関する検討 ...11
 1.3 用語の定義...12
 1.4 換算値 ..12
 1.4.1 燃料換算値 ..12
 1.4.2 CO2 排出係数 ..13

第 2 章 エネルギー消費量の実績..14
 2.1 エネルギー消費原単位の推移 ..14
 2.2 2007 年建て方×家族類型別エネルギー消費量の推計方法及び推計結果15
 2.2.1 推計方法 ..15
 2.2.2 推計結果 ..17

第 3 章 マクロモデルによるエネルギー需要予測...18
 3.1 2020 年のマクロ経済及びエネルギー需要の予測結果 ..18
 3.1.1 主要想定 ...18
 3.1.2 マクロ経済の予測結果 ...19
 3.1.3 エネルギー需要の予測結果 ..21
 3.2 2020 年家庭用エネルギー消費量 ..22
 3.2.1 2020 年のエネルギー消費原単位の推計方法 ...22
 3.2.2 2020 年家庭用エネルギー消費原単位推計結果（BAU） ..23
 3.2.3 2020 年家庭用エネルギー消費原単位推計結果（POU） ..26

第 4 章 シナリオ設定...29
 4.1 住宅の断熱性能向上 ...29
 4.2 家電製品の高効率化 ...32
 4.3 高効率給湯機/太陽熱温水器・ソーラーシステム/太陽光発電の普及34
 4.4 省エネルギーの普及 ...40
 4.5 次世代自動車の普及 ...41

第 5 章 シナリオ想定による 2020 年の将来予測結果 ...43
 5.1 家庭用 ..43
 5.2 乗用車 ..47

第 6 章 必要な投資金額に関する検討..48
 6.1 導入する省エネルギー・新エネルギー対策のコスト想定 ...49
 6.1.1 家電製品 ...49
Executive Summary

本調査は、2020年の家庭におけるエネルギー消費構造の変化と温室効果ガス排出量の削減可能性について検討したものである。同時に、政府が掲げる「2020年の温室効果ガス排出量1990年比25％削減」に対して、家庭用エネルギー消費に由来するCO2排出量削減の実現可能性について、対策メニューと追加投資金額のシナリオ想定を行い、それらが与える影響と課題について繰め込んだものである。

＜本調査の特徴＞
1. 計量経済予測パッケージソフト「エコノメイト」をベースに、全国マクロ経済モデル、家庭用エネルギー需要モデルを構築し、2020年時点での家庭用エネルギー消費の推計を行った。家庭用エネルギー消費の推計を行うにあたっては、①原油価格安定ケース ②原油価格高騰ケースに分け、それぞれのケースについて、技術の進展度合いを「過去のトレンドを反映させた現状趨勢シナリオ」と「省エネ政策の強化による高効率機器の普及拡大を考慮した技術進展シナリオ」について試算した。
2. 家庭からのCO2排出を考える際に、建て方（戸建住宅か集合住宅か）、家族類型（単身か夫婦かなど）によってエネルギー消費の傾向が異なることから、家庭を8つに区分し、分析、推計を行った（戸建、集合住宅の2区分×単身、夫婦のみ、夫婦+子、その他世帯の4区分）。
3. 将来最も起こりうるであろうと考えられる家庭における温室効果ガス排出量削減対策として、「技術進展シナリオ」について検討を行った。同時に、環境省の中長期ロードマップ（以下、中長期RM）をより詳しく分析するためのシナリオを想定し、省エネルギー・新エネルギー技術の導入スピード、CO2削減効果、追加投資金額について検討を行った。
 ①最尤（さいゆう）ケース・・業界団体が発表している目標値を参考に現実的な導入分野およびそのスピード、CO2削減効果を設定し、将来最も起こりうるであろうと考えられるシナリオを推計した。
 ②環境省準拠ケース・・中長期RMにおける普及台数想定を満たすようシナリオを想定。具体的には、将来の普及台数の想定は中長期RMと同等とし、個々の対策のCO2削減効果および追加投資金額は最尤ケースと同等と設定した。その結果、CO2削減効果と追加投資金額の差で中長期RMとの比較を行うことができる。
<モデル計算により算出された主要データ 2020年時点>

<table>
<thead>
<tr>
<th></th>
<th>原油価格安定ケース</th>
<th>原油価格高騰ケース</th>
</tr>
</thead>
<tbody>
<tr>
<td>原油価格</td>
<td>$128/bbl</td>
<td>$158/bbl</td>
</tr>
<tr>
<td>為替レート</td>
<td>130円/$</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>627兆円</td>
<td>566兆円</td>
</tr>
<tr>
<td>エネルギー総消費量（合計）</td>
<td>90年比 2%増加</td>
<td>90年比 11%減少</td>
</tr>
<tr>
<td>エネルギー総消費量（家庭）</td>
<td>90年比 27%増加</td>
<td>90年比 19%増加</td>
</tr>
</tbody>
</table>

家族類型別世帯数

<table>
<thead>
<tr>
<th>総世帯数</th>
<th>5327万世帯</th>
</tr>
</thead>
<tbody>
<tr>
<td>構成比</td>
<td>戸建</td>
</tr>
<tr>
<td>単身</td>
<td>9.5%</td>
</tr>
<tr>
<td>夫婦のみ</td>
<td>13.1%</td>
</tr>
<tr>
<td>夫婦+子供</td>
<td>15.5%</td>
</tr>
<tr>
<td>その他</td>
<td>15.7%</td>
</tr>
</tbody>
</table>

<中長期RMとシナリオ分析の比較>

<table>
<thead>
<tr>
<th></th>
<th>本報告による試算結果</th>
<th>環境省公表結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最尤ケース</td>
<td>環境省準拠ケース</td>
</tr>
<tr>
<td>家庭からのCO2排出量 原油価格安定ケース</td>
<td>90年比▲7%</td>
<td>90年比▲23%</td>
</tr>
<tr>
<td>家庭からのCO2排出量 原油価格高騰ケース</td>
<td>90年比▲24%</td>
<td>90年比▲38%</td>
</tr>
</tbody>
</table>

| | 30兆円 | 44兆円 | 48兆円注1 |
| | | | |

家計への負担（2011年～2020年まで累計）

| 削減費用 | 85万円/t-CO2 | 81万円/t-CO2 | 48万円/t-CO2 |

注1）家庭用の太陽光発電分は、環境省準拠ケースと同じ9兆円として想定

＜本調査により明らかになったこと＞

・「最尤ケース」の結果、2020年のCO2排出量は1990年比7%の減少に留まる結果となり、「中長期RM」で掲げている1990年比36%削減とは大きな乖離が生じた。

・さらに「中長期RM」と「環境省準拠ケース」を比較すると、CO2排出量の削減率に大きな差異があり、「中長期RM」は、当検討結果に比べ個々の対策の省エネ効果を大きく見込んだ。
でいる可能性がある。そのため、家計への負担額は同程度だが、90年比▲36%達成のために
は、普及台数を更に増やす必要があり、追加投資金額も更に多くなる可能性がある。

・ 削減費用は、「中長期 RM」では、48万円/t-CO2程度を想定しているが、「最尤ケース」で
は85万円/t-CO2と1.7倍となる。これは上述したように対策メニューの省エネ率の相違が
影響していると思われる。

・「中長期 RM」では普及台数の想定が過大であると考えられる。以下に、主な点を示す。
 ➢ 集合住宅への改次世代基準、断熱改修を施す住宅戸数が過大
 （新築集合住宅は新基準適合レベルが主であり、次世代基準および改次世代基準に適合
する住棟が急増する考えにくい。同時に、既存住宅の断熱改修戸数を大量
に見込んでいる。既存住宅の断熱改修はもっともコスト効果が低い対策であることが普
及のネックになっているが、後述するとおり、この追加コストを半分しか計上していな
い。）
 ➢ 照明のストック効率向上が過大
 （2020年にストックのほぼ全ての照明がLEDに代替される値に相当し、すべての照明
器具をLEDに代替することは考えにくい。）
 ➢ 太陽光発電の集合住宅導入が過大
 （集合住宅は、設置場所が限られている。また、設置により分譲価格や賃料が高くな
る等の普及への課題が存在する。）
 ➢ 高効率給湯器・太陽熱温水器の導入量が過大
 （両者で約4,420万台と想定しており8割を超える住宅で代替することになっている。
特に、建て方別・世帯型別の導入可能性や、既存給湯器からの代替の可能性について、
十分に考慮されていない懸念がある。例えば、集合住宅のPS設置ボイラの世帯、集合単
身世帯への導入が過大に想定されているといった問題点が挙げられる。）
 ➢ 省エネナビの普及率が保有世帯の80%（約4,300万世帯）は過大。
 （省エネナビの省エネ効果は数%と想定され、8割もの世帯に普及する蓋然性は見当た
らない。）
 ➢ 新築住宅の断熱性向上及び既存住宅の断熱改修、の追加投資金額について「半分は快適
性向上に寄与する」とし追加投資金額の中に入れていない。

＜シナリオ推計結果まとめ＞

（1） 前提条件とモデル予測結果

2007年から2010年にかけて原油は減少するものの、その後2020年にかけて上昇し、原油価
格は円建て105円/$まで上昇する。また、人口については減減していくものの、一方で高齢者人
口は年々増加し、2020年には総人口の29.1%を占めることとなる。世帯数についてはほぼ横ばい、
2020年付近では減少が始まる。

我が国全体のエネルギー総消費量については、合計も家庭用、乗用車も減減していく。要因と
して、照明・家電製品需要の増加があるものの、機器の高効率化や高断熱住宅の普及などによる
暖房需要の減少が影響しているものと思われる。
（2）シナリオ想定

住宅の断熱性能向上、家電製品の高効率化、高効率給湯機の普及、太陽熱温水器・ソーラーシステム、太陽光発電の普及、省エネナビの普及、次世代自動車の普及の「技術進展シナリオ」を想定する。

住宅断熱性能向上では、2015年に次世代基準が義務化され、さらに改次世代基準の普及と断熱改修を想定した。推計の結果、次世代超のストック適合率が「環境省準拠ケース」で4%、「最尤ケース」で1%となっている。

家電製品の高効率化では、エアコン、テレビ、冷蔵庫、照明の効率改善を見込んだ。とりわけ改善率の高い想定は冷蔵庫の「最尤ケース」であり、BAU692kWh/年に対し「最尤ケース」が450kWh/年となっている。また、「環境省準拠ケース」における照明の効率改善も著しく、2007年の効率指標を1.0とした場合、BAU0.93、「環境省準拠ケース」0.56、「最尤ケース」0.92となっている。

高効率給湯機、太陽熱温水器・ソーラーシステムの普及では、「環境省準拠ケース」において高効率給湯器の広範囲の普及を想定した（高効率給湯器、太陽熱温水器の合計普及台数が約4,420万台）。一方で、「最尤ケース」では実際の導入にあたり、普及の阻害要因（集合住宅のPS設置世帯）を考慮した上で2020年の導入量を推計し、高効率給湯器、太陽熱温水器の合計普及台数は約3,410万台となっている。「環境省準拠ケース」、「最尤ケース」とも高効率給湯機の導入が比較的容易な戸建の夫婦、夫婦＋子、その他世帯などでは、従来型の給湯器がほぼ全て高効率給湯器に代替する結果となった。

太陽光発電の普及では、「環境省準拠ケース」はストック2,440万kW、990万戸、「最尤ケース」はストック1,960万kW、530万戸の導入を想定した。

省エネナビの普及では、現状の普及率0%に対し、「環境省準拠ケース」では80%、「最尤ケース」では20%の普及率を見込んだ。

次世代自動車の普及では電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車の普及を想定した。2020年の電気自動車ストック台数は「環境省準拠ケース」250万台、「最尤ケース」184万台である。ハイブリッド自動車は、2020年ストック台数が環境省準拠ケース880万台、最尤ケース740万台となっている。また、プラグインハイブリッド自動車は、2020年ストック台数が「環境省準拠ケース」140万台、「最尤ケース」108万台となった。

（3）シナリオ想定に基づく推計結果

シナリオによる推計結果では、両ケース共に更にエネルギー消費量の減少が大きく、家庭用のCO2排出量については、「環境省準拠ケース」のBAUで1990年比23%削減、同POUでは38%削減となり、加えて、今回の「最尤ケース」（現実的な普及速度で最大限導入を見込んだケース）では、BAUで1990年比7%削減、POUでは38%削減となる。

（4）投資金額と家庭の負担

今回想定した対策の中で最も高い削減費用となったのは住宅断熱化である。EV、SOLAMO、エコキュート全電化世帯が次いで高く、太陽光発電は86万円/t-CO2であった。家電の削減費用
は全体的に低く、特に価格低下の大きい照明が、最も低い結果となった。乗用車の中では現在普及が進んでいるハイブリッド自動車の削減費用が最も安い結果となる。

2011年～2020年の累積追加投資金額は、「環境省準拠ケース」で家庭用35兆円（太陽光発電含みの場合は44兆円）と、「中長期 RM」に掲載されている金額と概ね同程度である。「最尤ケース」ではCO2削減量は1990年比▲7%、家庭用の累積追加投資金額は22兆円（太陽光発電含みの場合は29兆円）である。

＜中長期 RMとシナリオ推計結果の比較＞
今回推計した「環境省準拠ケース」と「中長期 RM」を比較したところ、「中長期 RM」では1990年比25%削減、その中でも家庭部門では36%削減が割り振られている。
今回の算定では、環境省の想定している対策メニューと本調査の想定内容が完全に一致しているわけではない点に留意する必要があるものの、「中長期 RM」と「最尤ケース」では▲23%であり、「中長期 RM」との差は13ポイントと大きく、このままでは家庭部門で36%の削減目標が厳しいと言わざるを得ないであろう。加えて、現実的な導入スピード等を考慮した「最尤ケース」を見ると▲7%と、1990年より低い水準となるものの、目標に大きく届かない。累積追加投資金額については、「中長期 RM」と「環境省準拠ケース」で大きな差異はない。家庭用における2011年～2020年の累積追加投資金額は「最尤ケース」で30兆円となる。削減費用については、「中長期 RM」では48万円/t-CO2、「環境省準拠ケース」では81万円/t-CO2と、1.7倍と大きな相違があり、これはCO2削減量の違いによるものと考えられる。「最尤ケース」では85万円/t-CO2と、削減費用が若干高めとなるが、これは「環境省準拠ケース」では価格低下の大きい2020年近傍に普及が進むためである。

＜今後の方策に関する考察＞
本試算では政府が目標とする2020年のCO2排出量の削減目標の達成は、少なくとも家庭部門においては厳しい結果となっている。また、市場の構成そのものが変化することにも注意すべきと考えられる。このような状況にあって、今後のCO2排出量削減を推進する上で留意すべき以下の4点について考察を行った。
（1）バックキャスティングによる計画の限界
（2）市場分散化への対応
（3）ファイナンスの充実
（4）ゼロエネルギーハウス
第1章 調査概要

1.1 調査の構成

調査の構成は下記(1)〜(3)のとおりである。それぞれ詳細については1.2調査内容に示す。（1）将来予測モデルの構築（2）シナリオの想定による将来予測（3）必要な投資金額と家庭の負担に関する検討

図1.1.1に家庭用エネルギー消費将来予測に関する調査フローを示す。家庭用エネルギー需要の将来推計モデルは、当研究所の既存モデルを用いる。シナリオ想定では、既存調査結果を元に技術進展の影響を考慮したエネルギー消費変化係数を設定する。このエネルギー消費変化係数を将来予測モデルに組み込むことにより、シナリオ予測によるエネルギー需要の将来予測を行う。最後に、シナリオにおいて想定された高効率機器普及等に係わる投資金額について試算を行う。

図1.1.1 家庭用エネルギー消費将来予測に関する調査フロー

1.2 調査内容

1.2.1 将来予測モデル

家庭用エネルギー需要は、経済状況、人口構造、気象状況、エネルギー価格、住宅構造、機器保有台数、等様々な影響を受ける。これら影響因子をモデルの中に組み込むことにより、種々の要因が及ぼす影響の定量的に把握することが可能な形でエネルギー消費の推計を行う。なお、マクロモデルの構築に当たっては、市販ソフトである「エコノメイト」を使用する。

※注1: 住環境計画研究所, 既存調査結果
今回試用するモデルは全国マクロ経済モデル、家庭用エネルギー需要モデルとする。対象地域、予測年等の調査対象は表 1.2.1 のとおりである。

表 1.2.1 調査対象

<table>
<thead>
<tr>
<th>対象地域</th>
<th>全国</th>
</tr>
</thead>
<tbody>
<tr>
<td>実績期間</td>
<td>1984年近傍〜2007年</td>
</tr>
<tr>
<td>予測年</td>
<td>2020年</td>
</tr>
</tbody>
</table>

モデルの全体フローを図 1.2.1 に示す。全国マクロモデルの出力の一部が全国産業連関表、全国エネルギーモデルに入力される。図 1.2.2 に全国マクロ経済モデルの構造を示す。原油価格、為替レート、全国マクロ経済指標等をもとに、GDPや賃金、物価、生産、雇用、業務用床面積といった経済指標を算出する。これら経済活動の予測結果及び、世帯数、気候、エネルギー価格等をもとにエネルギー需要モデルにより、部門別のエネルギー消費量を算出する（図 1.2.3）。

図 1.2.1 マクロモデルの全体フロー
1.2.2 シナリオの想定による将来予測

表 1.2.2 に、本調査で推計を行う 6 つのシナリオケースを示す。ケース 1、ケース 4 がマクロモデルより得られる基準ケースであり、ケース 3～4、ケース 5～6 がそれぞれ基準ケースとシナリオ想定内容を組み合わせたシナリオケースとなっている。以下に各ケースの概要について述べる。

<table>
<thead>
<tr>
<th>ケース名称</th>
<th>原油価格</th>
<th>技術進展シナリオ</th>
<th>ケース名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>原油価格安定シナリオ (BAU)</td>
<td>環境省中長期ロードマップ準拠シナリオ*</td>
<td>BAU</td>
</tr>
<tr>
<td>BAU_S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAU_S2</td>
<td>原油価格高騰シナリオ (POU)</td>
<td>環境省中長期ロードマップ準拠シナリオ*</td>
<td>POU</td>
</tr>
<tr>
<td>POU_S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POU_S2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※シナリオの定義については、P29 を参照のこと

(1) 基準ケースの算出
将来考え得る省エネ政策の導入と、それに伴う技術進展を考慮したシナリオを設定し、マクロモデルにより算出された基準ケースと組み合わせることにより、エネルギー消費量の将来推計を行う。本調査では、過去のトレンドを反映させた現状趨勢 (BAU) ケースと、原油価格高騰がエネルギー需要に与える影響に着目し、マクロモデルの計算に用いる原油価格のパラメーターを調整した原油価格高騰 (POU) ケースの 2 ケースを基準ケースとして算出する。

(2) シナリオ想定
本調査では、高効率給湯器、太陽光発電等の高効率機器の普及拡大を考慮した技術進展シナリオを想定する。以下に、2020 年に想定されるシナリオの概要を示す。

＜技術進展シナリオ＞
省エネ政策強化により、住宅の断熱性能義務化や、家電製品の機器効率がさらに向上する。また、エコキュートや蓄熱回収型給湯器などの高効率給湯器が、業界及び政府導入目標値達成に向けて年々普及拡大しており、家庭用コーポレーションの導入も促進される。さらに、補助金等の施策の導入により、太陽光発電や太陽熱温水器の設置世帯、またハイブリッド自動車など次世代自動車の保有率が今後さらに増加する。

(3) 建て方×家族類型別エネルギー消費の推計概要
統計データの制約上、マクロモデルによる予測結果は平均値となるが、今回、マクロ予測と実
態調査結果をリンケージすることにより、将来における建て方×家族類型別消費量を算出し、8区分別に分析を行う。

図1.2.4、図1.2.5にリンケージ方法のコンセプトを示す。既存調査3を集計した建て方×家族類型（8区分）別のエネルギー消費原単位に8区分別の世帯数を乗じた総消費量が、マクロ予測モデルより算出されるエネルギー総消費量（ex.都市ガス総消費量、電力総消費量）と整合するよう2020年の消費原単位を算出する。エネルギー消費原単位は種別用途別に集計する。

図1.2.4 リンケージ方法のコンセプト

図1.2.5 実態調査とマクロ予測モデルのリンケージ概要
（マクロ予測モデルによる将来値と実態調査結果の整合）

① エネ原単位伸び率の決定
（マクロ側）
マクロ総エネルギー消費量：Em
世帯数：Hm → Hm(x,y)の推定
x:家族類型
y:建て方

（DtMg側）
エネ消費原単位：E'(x,y)を抽出
Ed（合計）= ∑ (E'(x,y) × Hm(x,y)) × R
E'(x,y)R:該当年のエネ消費原単位（推計）

2 建て方（戸建、集合）×家族類型（単身、夫婦のみ、夫婦+子、その他）
3 住環境計画研究所推計
（4）シナリオ別エネルギー消費の推計概要
シナリオ想定による将来予測の推計概要を図1.2.6に示す。上記の方法を用いることで8区分別の消費原単位、世帯数を推計する事が可能となる。またシナリオケースについては、実態調査結果等を併せて用いることで原単位の変化（i_H（x,y））、世帯構成の変化（i_E（x,y））を織り込む（乗じる）ことができ、実態に基づいた、従前より詳細なシナリオ想定による予測を行うことが可能となる。

図1.2.6 実態調査とマクロ予測モデルのリンケージ概要
（シナリオ想定の方法）

1.2.3 必要な投資金額と家庭の負担に関する検討
技術進展シナリオでは省エネ機器の普及拡大が見込まれており、これらの機器の導入に必要な投資金額と家庭の負担額について推計を行う。機器のコスト等推計の前提となる条件については”第6章 必要な投資金額に関する検討”に示す。
1.3 用語の定義

<table>
<thead>
<tr>
<th>用語</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU（Business as usual）</td>
<td>現状趨勢ケース</td>
</tr>
<tr>
<td>POU（Price of Oil Up）</td>
<td>原油高騰ケース</td>
</tr>
<tr>
<td>UG（Urban Gas）</td>
<td>都市ガス</td>
</tr>
<tr>
<td>KR（Kerosene）</td>
<td>灯油</td>
</tr>
<tr>
<td>EC（Ecocute）</td>
<td>CO2冷媒ヒートポンプ給湯機（エコキュート）</td>
</tr>
<tr>
<td>EJ（Eco-Joζu）</td>
<td>潜熱回収型給湯器（エコジョーズ）</td>
</tr>
<tr>
<td>CGS（Cogeneration system）</td>
<td>家庭用コージェネレーションシステム（エコウィル、エネファーム）</td>
</tr>
<tr>
<td>SWH（Solar Water Heater）</td>
<td>太陽熱温水器</td>
</tr>
<tr>
<td>SS（Solar System）</td>
<td>ソーラーシステム</td>
</tr>
<tr>
<td>PV（Photovoltaic）</td>
<td>太陽光発電</td>
</tr>
<tr>
<td>HV（Hybrid vehicle）</td>
<td>ハイブリッド車</td>
</tr>
<tr>
<td>EV（Electric vehicle）</td>
<td>電気自動車</td>
</tr>
<tr>
<td>PHV（Plug-in Hybrid Vehicle）</td>
<td>プラグインハイブリッド車</td>
</tr>
</tbody>
</table>

1cal (calorie) : 標準状態の下で 1g の水を 1℃上げるように必要な熱量
J (Joule) : 熱量の単位。1cal = 4.18605J
MJ (Mega Joule) : 熱量の単位。1MJ = 10^6J
GJ (Giga Joule) : 熱量の単位。1GJ = 10^9J
TJ (Tera Joule) : 熱量の単位。1TJ = 10^12J
PJ (Peta Joule) : 熱量の単位。1PJ = 10^15J
COP（Coefficient Of Performance）: 成績係数。入力エネルギー1に対して、何倍の出力エネルギーを得られるかを示した数値

1.4 换算値
1.4.1 燃料换算值

<table>
<thead>
<tr>
<th>燃料</th>
<th>热量换算值</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>電力</td>
<td>3.6MJ/kWh</td>
<td>地球温暖化対策の推進に関する法律施行 \n電力二次換算値</td>
</tr>
<tr>
<td>都市ガス</td>
<td>45MJ/m³</td>
<td>東京ガスの場合 \n都市ガス会社により異なる</td>
</tr>
<tr>
<td>LPガス</td>
<td>104.1MJ/m³</td>
<td>地球温暖化対策の推進に関する法律施行 \n比容積 0.482m³/kg</td>
</tr>
<tr>
<td>灯油</td>
<td>36.7MJ/ℓ</td>
<td>地球温暖化対策の推進に関する法律施行</td>
</tr>
<tr>
<td>ガソリン</td>
<td>34.6MJ/L</td>
<td>地球温暖化対策の推進に関する法律施行</td>
</tr>
</tbody>
</table>
1.4.2 CO2排出係数

表 1.4.2 にCO2排出量の計算に用いるCO2排出係数を示す。

<table>
<thead>
<tr>
<th>年度</th>
<th>電気</th>
<th>都市ガス</th>
<th>LPG</th>
<th>灯油</th>
<th>ガソリン</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990年</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995年</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000年</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007年</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020年</td>
<td></td>
<td>0.092</td>
<td>0.051</td>
<td>0.060</td>
<td>0.068</td>
</tr>
</tbody>
</table>

※電気の括弧内は「kg-CO2/kWh」
※S1は「環境省準拠ケース」、S2は「最尤ケース（P29参照）」
※出所：電気事業連合会―電気事業における環境行動計画
 1990年～2007年：電気事業連合会―電気事業における環境行動計画
 2020年BAU：電気事業連合会 定例会要旨（2009年4月17日）
 2020年BAU_S1, BAU_S2, POU, POU_S1, POU_S2：環境省中長期ロードマップ（2010年3月公表版）に合わせて係数を想定。
第2章 エネルギー消費量の実績

2.1 エネルギー消費原単位の推移

図2.1.1に全国のエネルギー種別消費原単位、図2.1.2に用途別エネルギー消費原単位を示す。

エネルギー消費原単位は2007年で37.3GJ/世帯・年であり、90年比で7.2%増となっている。種別に見ると、電気の伸びが著しく90年比1.4倍である。都市ガスは90年以降横ばいで推移し、90年比1.02倍となっている。LPG、灯油はそれぞれエネルギー消費原単位が減少傾向であり、90年比でLPG、灯油とも0.9倍となっている。

用途別のエネルギー消費原単位は、照明家電のみ増加傾向であり、90年比1.4倍である。暖房及び冷房需要はその年の外界気象の影響により変動が大きいが、2007年は暖房が90年比0.9倍、冷房が90年比1.1倍となっている。給湯、厨房は90年以降横ばいで推移している。

<table>
<thead>
<tr>
<th>年度</th>
<th>電気</th>
<th>都市ガス</th>
<th>LPG</th>
<th>灯油</th>
<th>石炭</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>34.8</td>
<td>35.4</td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>1991</td>
<td>35.7</td>
<td>36.7</td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>1992</td>
<td>36.7</td>
<td>37.6</td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>1993</td>
<td>37.7</td>
<td>38.7</td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>1994</td>
<td>38.8</td>
<td>39.8</td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>年度</th>
<th>暖房</th>
<th>冷房</th>
<th>給湯</th>
<th>厨房</th>
<th>照明・家電</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>11.5</td>
<td>12.0</td>
<td>12.2</td>
<td>12.5</td>
<td>13.3</td>
</tr>
<tr>
<td>1991</td>
<td>12.0</td>
<td>12.2</td>
<td>12.5</td>
<td>13.3</td>
<td>13.6</td>
</tr>
<tr>
<td>1992</td>
<td>12.2</td>
<td>12.5</td>
<td>13.3</td>
<td>13.6</td>
<td>13.9</td>
</tr>
<tr>
<td>1993</td>
<td>12.5</td>
<td>13.3</td>
<td>13.6</td>
<td>13.9</td>
<td>14.3</td>
</tr>
<tr>
<td>1994</td>
<td>13.3</td>
<td>13.6</td>
<td>13.9</td>
<td>14.3</td>
<td>14.7</td>
</tr>
</tbody>
</table>

図2.1.1 エネルギー種別消費原単位の推移（全国総世帯）
図2.1.2 用途別エネルギー消費原単位の推移（全国総世帯）
2.2 2007年建て方×家族類型別エネルギー消費量の推計方法及び推計結果

2.2.1 推計方法

表2.2.1に建て方×家族類型（以下、8区分）別世帯区分を示す。この区分は、今回想定する高効率技術の普及が建て方や家族類型により普及の速度が異なるため、区分ごとにエネルギー消費原単位が大きく異なり、将来の予測結果に影響を及ぼすと考えられることからこの区分を採用する。また2007年の世帯数については、国勢調査による8区別世帯数を、住民基本台帳の総世帯数と整合させたものを用いることとする。

表2.2.1 建て方×家族類型別世帯区分（8区分）

<table>
<thead>
<tr>
<th>建て方（2区分）</th>
<th>家族類型（4区分）</th>
</tr>
</thead>
<tbody>
<tr>
<td>戸建</td>
<td>単身、夫婦のみ、夫婦+子、その他世帯</td>
</tr>
<tr>
<td>集合</td>
<td>単身、夫婦のみ、夫婦+子、その他世帯</td>
</tr>
</tbody>
</table>

建て方×家族類型別エネルギー消費原単位の推計にはアンケート調査結果をベースにしているが、この結果はサンプル調査であるためバイアスが生じる。そのため既存調査による8区別消費原単位を補正することで可能な限りバイアスを取り除き、8区別補正後消費原単位と8区別世帯数を乗じた総消費量（Ed）と、実績の総消費量（Em）の乖離（Em／Ed）を補正後消費原単位に乗じて、Emと整合した8区別消費原単位を推定する（図1.2.5）。

以下に、原単位の補正方法を述べる。

・暖房：8区分別の既存調査結果（2005年度）を基に、全国の暖房度日を用いて暖房（合計）消費原単位を補正。暖房消費原単位の種別割合については種別用途別エネルギー消費マトリクス4の暖房種別割合を用いて補正。

・冷房：既存調査結果（2005年度）を基に、全国の冷房度日を用いて冷房消費原単位を補正。

・給湯、厨房：給湯消費原単位は既存調査結果（2005年度）の値を用い、種別割合については種別用途別エネルギー消費マトリクスの給湯種別割合を用いて補正。

・照明：既存調査結果の値を用いる。

4 出所：「2007年版家庭用エネルギー統計年報」住環境計画研究所
図 2.2.1 2007 年及び 2020 年の 8 区分別消費原単位の推計方法
2.2.2 推計結果

図 2.2.2〜図 2.2.3 に 2007 年における建て方×家族類型別エネルギー種別消費原単位を示す。各地域の総世帯平均は前述の通りである。その他世帯を除くと、単身世帯、夫婦のみ世帯、夫婦+子世帯の順で消費原単位は大きくなっており、単身世帯では、戸建世帯は集合世帯の 1.2～1.3 倍、夫婦のみ世帯及び夫婦+子世帯では 1.2～1.4 倍となる。建て方別に差がある夫婦のみ世帯を種別に見ると、電気及び灯油の消費量の差が大きい。戸建その他世帯が集合その他世帯に比べて大きいのは、世帯人員の影響が大きい。用途別に見ると、戸建世帯は、暖房、照明・家電の消費量が集合世帯に比べて大きい。

図 2.2.2 2007 年建て方家族類型別エネルギー種別消費原単位

図 2.2.3 2007 年建て方家族類型別用途別エネルギー消費原単位
第3章 マクロモデルによるエネルギー需要予測

エネルギー需要の将来予測結果を算出するためには前提となる人口、経済状況等の予測が必要となる。本報告書ではエネルギー需要モデルに、マクロ経済モデルを連成させることで、全国の世帯数、活動量等を考慮した2020年のエネルギー需要を予測する。

3.1 2020年のマクロ経済及びエネルギー需要の予測結果

3.1.1 主要想定

マクロ経済モデルの計算に際し、前提となる主要想定結果について示す。図3.1.1にBAUケースとPOUケースの原油価格と為替レートを示す。BAUについては、原油価格（ドル建て）については2007年から2010年にかけて減少するものの、それ以降2020年にかけて再び上昇する。為替レートはファンダメンタルズの悪化により今後円安傾向が続くと想定する。その結果、2020年の原油価格（円建て）は、2007年に比べ1.3倍に上昇する。POUについては、2010年までは同じ想定とし、それ以降2020年にかけて158ドル/bblまで上昇する。その結果2020年の原油価格（円建て）は、2007年に比べ1.6倍に上昇する。BAUと比較すると、1.2倍の上昇となる。

図3.1.2に全国の人口及び世帯数の想定を示す。人口と世帯数については国立社会保障人口問題研究所の中位推計結果を参照しておりPOUケースでも同様の値を用いる。

※表記価格は年平均値
※原油価格は、2008年7月に史上最高の147ドル/bblを記録（WTI原油価格）

図3.1.1 原油価格と為替レート
（左：BAUケース、右：POUケース）

5 BAU：現状趨勢ケース、POU：原油価格高騰ケース
3.1.2 マクロ経済の予測結果

図3.1.3にマクロ経済モデルによる主要予測結果を示す。実質GDP（a）は、2007年562兆円から2020年には、BAUで627兆円、POUで566兆円となり、BAUでは2007年に比べ増加するがPOUでは横ばいに抑えられる。年平均伸び率は、BAU+0.8%/年、POU+0.1%/年である。

BAUの増加要因としては、絶対値で見ると最終消費支出の増加量が大きいが、伸び率で見ると、財貨・サービス純輸出が大きい。

住宅戸数（b）は、2007年47.7百万戸から2020年にはBAUで53.2百万戸、POUで52.7百万戸とPOUの方が戸数は若干減少するものの、いずれも2007年に比べ増加する。内訳を見ると、戸建住宅、集合住宅共に増加しており、特に、集合住宅の伸びが顕著である。その結果、集合住宅割合は2007年42.9%から2020年にはBAUで46.2%、POUでは45.9%と高くなる。POUの集合化率がBAUに比べて減少するのは、原油高騰により経済が落ち込むことで地価が減少し、戸建住宅が増えるためである。
図 3.1.3 主要予測結果
3.1.3 エネルギー需要の予測結果

マクロ経済モデルからの上記予測結果を用いて、部門別、種別のエネルギー需要の予測を行う。

図 3.1.4 に全国における BAU と POU の部門別エネルギー需要、図 3.1.5 に種別エネルギー需要を示す。合計では、2007年15,857PJから2020年BAUで14,161PJと減少、POUでは12,295PJと減少量は更に大きくなり、2007年から2020年の年平均伸び率はBAUで0.9%/年減（2007年から11%減）、POUで1.9%/年減（2007年から22%減）となる。2020年では、2007年に比べて全ての部門、エネルギー種が減少していくこととなる。
3.2 2020年家庭用エネルギー消費量

3.2.1 2020年のエネルギー消費原単位の推計方法

(1) 世帯数

8区分別に求めた2007年の世帯数を基に2020年の世帯数を推計する。推計には、社会保障・人口問題研究所の家族類型別結果とマクロ予測モデルの建て方別住宅数の2020年の将来結果を用い、建て方×家族類型世帯数のマトリクスを収束計算することにより、2020年の建て方×家族類型別世帯数を求めめる。

なお、以降、本調査で用いる世帯数は、住民基本台帳に掲載されている世帯数と整合せるものである。具体的には、住民基本台帳に掲載された2007年世帯数に国立社会保障・人口問題研究所の将来予測値より求めた2020年までの伸び率を乗じることによって算出した世帯数を採用する。

(2) エネルギー消費原単位

2.2.2 で求めた2007年の8区分別エネルギー消費を基に、種別及び用途別の総世帯平均エネルギー消費の将来の伸び率(2007年から2020年)を建て方×家族類型別別の各セグメントに適用し、iteration(逐次法)で解いて2020年の建て方×家族類型別エネルギー消費の一次結果を算出する。その後、8区分別のエネルギー消費量の一次結果と総世帯のエネルギー消費量が一致するよう一次結果を補正する。

\[E_t(x,y) = E_{t-1}(x,y) \times (1 + \alpha_{t-1}) \times (1 + \beta_{t-1}) \]

\(E(x,y) \):エネルギー消費量 (種別、用途別)
\(\alpha \):エネルギー種別消費量伸び率
\(\beta \):用途別エネルギー消費量伸び率
\(t \):Time

図 3.2.1 2020年の8区分別エネルギー消費原単位の推計方法概要

※E:エネルギー消費量（一次結果）
E′:エネルギー消費量（補正後）

ここで用いている住宅数とは、住宅・土地統計調査での名称であり、定義としては居住者ありの住宅数のこと

22
3.2.2 2020年の家庭用エネルギー消費原単位推計結果（BAU）

2020年の世帯数、エネルギー消費原単位及びエネルギー消費量の推移を示す。

1）世帯数

図3.2.2に2007年と2020年の建て方×家族類型別の世帯数の推移と世帯数の変化を示す。世帯数は2007年約5200万世帯から2020年約5300万世帯となり、約90万世帯(+2%)増加する。

2）エネルギー消費原単位

図3.2.3、図3.2.4に種別及び用途別のエネルギー消費原単位の推移を示す。エネルギー消費原単位は2007年37.3GJ/世帯・年から2020年34.7GJ/世帯・年となる(▲7%)。種別に見ると、2007年から2020年にかけて電気(+6%)は増加し、都市ガス(▲6%)、LPG(▲22%)、灯油(▲25%)は減少する。用途別に見ると、暖房▲7%，給湯▲15%，厨房▲13%，照明家電+6%となる。

図3.2.5、図3.2.6に建て方×家族類型別のエネルギー消費原単位の推移を示す。家族類型別に見ると、2007年から2020年にかけて消費原単位は全てのセグメントで少なくなっている。種別に見ると、LPG(▲18〜▲19%)、灯油(▲22〜▲23%)の減少が大きく、用途別に見ると、照明・家電は増加(+8〜+10%)、暖房(+13〜+14%)、給湯(▲11〜▲13%)は減少傾向である。
3）エネルギー需要
図3.2.7に種別エネルギー消費量の推移を示す。エネルギー消費量は2007年1953PJから2020年1848PJと5%減少する。世帯数は微増するものの、それ以上にエネルギー消費原単位の減少影響が大きいことが要因である。種別に見ると、2007年から2020年にかけて電気は+8%(+71PJ)、都市ガスは△5%(△20PJ、13A換算△4.3億m³)、LPガスは△20%(△53PJ)、灯油は△24%(△103PJ)となる。

図3.2.6 建て方×家族類型別用途別エネルギー消費原単位（全国）

図3.2.7 エネルギー種別消費量の推移
3.2.3 2020年の家庭用エネルギー消費原単位推計結果（POU）

1）世帯数

図3.2.8に2020年の世帯数を示す。世帯数は上述したとおり前提条件として変化しないことを仮定している。BAUとPOUを比較すると、POUでは集合比率がわずかに減少することで、世帯の構成比が変化しているが、ほとんど影響がないと言える。

2）エネルギー消費原単位

図3.2.9に建て方×家族類型別エネルギー種別消費原単位、図3.2.10に建て方×家族類型別用途別エネルギー消費原単位を示す。8区別に見ると、POUはBAUからさらに5〜7%減少し、2007年と比較すると、9〜11%減少する。また都市ガス消費量については2007年と比較して4〜5%の減少である。用途別に8区別に見ると、BAUに比べて、暖房は原油高騰によりさらに減少し、給湯は必需的な需要である性格をうけてほぼ横這い、照明・家電は減少となる。2007年と比較すると、照明・家電は横這いであるが、暖房は▲20%超と減少が大きい。給湯は約▲13%となる。
3）エネルギー需要

図 3.2.11 に種別エネルギー消費量、図 3.2.12 に用途別エネルギー消費量の推移を示す。2020POU
のエネルギー消費量は 1731PJ と 2007 年に比べ 13%減少する。電気は ▲1%（▲12PJ）、都市ガスは
▲5%（▲20PJ、13A 換算 ▲4.7 桶）LPG ガスは ▲21%（▲56PJ）、灯油は ▲31%（▲133PJ）とな
る。
図 3.2.12 用途別エネルギー消費量
第4章 シナリオ設定

2020年の技術進展を考慮した家庭用エネルギー消費の動向を比較検討するため、住宅の断熱性能向上、家電機器の高効率化、高効率給湯機の普及、太陽熱温水器・ソーラーシステム／太陽光発電の普及、省エネナビの普及、次世代自動車の普及を考慮したシナリオを想定する。技術進展シナリオでは、下記2ケースにおけるシナリオ想定値を設定する。

1) 中長期ロードマップ準拠ケース（以下「環境省準拠ケース」）
環境省中長期ロードマップにおける目標値を参考にシナリオ想定値を設定する。

2) 最尤ケース
政府・業界目標値を基に導入限界量を考慮したシナリオ想定値を設定する。

以下に、住宅の断熱性能向上、家電機器の高効率化、高効率給湯機の普及、太陽熱温水器・ソーラーシステム／太陽光発電の普及、省エネナビの普及、次世代自動車の普及のそれぞれについて、環境省準拠ケースと最尤ケースのシナリオ想定値と想定内容について示す。

4.1 住宅の断熱性能向上
住宅の断熱性能向上として、戸建、集合住宅における新築の基準適合率や既築断熱改修の割合を表4.1.1のとおり想定する。なお、新築集合住宅は新基準適合レベルが主であり、次世代基準および改次世代基準に適合する住棟が急速に拡大することは考えにくい。そのため、最尤ケースでは改次世代基準の普及は戸建住宅のみを考慮し、新築の20%に導入されると想定する。また、環境省準拠ケースでは既存住宅の断熱改修戸数が50万戸/年と大量に見込まれているため、最尤ケースでは1/5の10万戸/年と想定する。表4.1.1の想定の下で推計されたストック住宅の断熱基準適合率を表4.1.2に示す。

建て方別の各基準の断熱性能は、熱負荷シミュレーション（計算ソフトはAE-Sim/heat）の計算結果を参照する。また、改示世代基準の暖房負荷は、建築環境・省エネルギー機構「住宅事業建築主の判断の基準ガイドブック」に示された、IVa、IVb地域における等級4と等級4超の熱損失係数（戸建、集合とも等級4：2.7、等級4超1.9）の比を基に算出する。一方で冷房負荷については、次世代基準を超える断熱性能が冷房負荷に与える影響は軽微であると仮定し、次世代基準と改次世代基準の冷房負荷は同じと想定する。表4.1.3は、無断熱住宅の暖冷房負荷を1.0とした場合の、他基準の負荷指数である。

表4.1.2の適合率と表4.1.3の各基準の負荷指数より、住宅の断熱性能向上の効率指標シナリオ想定値をケースごとに算出する（表4.1.4）。

7 環境省 地球温暖化対策に係る中長期ロードマップの提案～環境大臣 小沢銘仁 試案～（平成22年3月）
表 4.1.1 住宅の断熱性能向上の想定内容

<table>
<thead>
<tr>
<th>想定内容</th>
<th>BAU ケース</th>
<th>環境省準拠ケース</th>
<th>最尤ケース</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 年に次世代基準が義務化</td>
<td>住宅の断熱性能向上の想定内容</td>
<td>住宅の断熱性能向上の想定内容</td>
<td>住宅の断熱性能向上の想定内容</td>
</tr>
<tr>
<td>BAU ケース</td>
<td>＜戸建＞改次世代基準 2020 年に新築の 10%</td>
<td>＜戸建＞改次世代基準 2020 年に新築の 10%</td>
<td>＜戸建＞改次世代基準 2020 年に新築の 10%</td>
</tr>
<tr>
<td></td>
<td>＜集合＞次世代基準 2020 年に新築の 10%</td>
<td>＜集合＞次世代基準 2020 年に新築の 10%</td>
<td>＜集合＞次世代基準 2020 年に新築の 10%</td>
</tr>
<tr>
<td></td>
<td>(大手ディベロッパー供給戸数の約 5 万戸に相当)</td>
<td>(大手ディベロッパー供給戸数の約 5 万戸に相当)</td>
<td>(大手ディベロッパー供給戸数の約 5 万戸に相当)</td>
</tr>
<tr>
<td></td>
<td>旧基準 2020 年に新築の 0%</td>
<td>旧基準 2020 年に新築の 0%</td>
<td>旧基準 2020 年に新築の 0%</td>
</tr>
<tr>
<td>環境省準拠ケース</td>
<td>2015 年に次世代基準が義務化</td>
<td>2015 年に次世代基準が義務化</td>
<td>2015 年に次世代基準が義務化</td>
</tr>
<tr>
<td></td>
<td>＜戸建・集合＞次世代基準 2020 年に新築の 70%</td>
<td>＜戸建・集合＞次世代基準 2020 年に新築の 70%</td>
<td>＜戸建・集合＞次世代基準 2020 年に新築の 70%</td>
</tr>
<tr>
<td></td>
<td>改次世代基準 2020 年に新築の 30%</td>
<td>改次世代基準 2020 年に新築の 30%</td>
<td>改次世代基準 2020 年に新築の 30%</td>
</tr>
<tr>
<td></td>
<td>一段上の基準に改修 50 万戸/年（戸建・集合）</td>
<td>一段上の基準に改修 50 万戸/年（戸建・集合）</td>
<td>一段上の基準に改修 50 万戸/年（戸建・集合）</td>
</tr>
<tr>
<td>最尤ケース</td>
<td>2015 年に次世代基準が義務化</td>
<td>2015 年に次世代基準が義務化</td>
<td>2015 年に次世代基準が義務化</td>
</tr>
<tr>
<td></td>
<td>＜戸建＞改次世代基準 2020 年に新築の 80%</td>
<td>＜戸建＞改次世代基準 2020 年に新築の 80%</td>
<td>＜戸建＞改次世代基準 2020 年に新築の 80%</td>
</tr>
<tr>
<td></td>
<td>改次世代基準 2020 年に新築の 20%</td>
<td>改次世代基準 2020 年に新築の 20%</td>
<td>改次世代基準 2020 年に新築の 20%</td>
</tr>
<tr>
<td></td>
<td>一段上の基準に改修 5 万戸/年</td>
<td>一段上の基準に改修 5 万戸/年</td>
<td>一段上の基準に改修 5 万戸/年</td>
</tr>
<tr>
<td></td>
<td>＜集合＞次世代基準 2015 年以降新築の 100%</td>
<td>＜集合＞次世代基準 2015 年以降新築の 100%</td>
<td>＜集合＞次世代基準 2015 年以降新築の 100%</td>
</tr>
<tr>
<td></td>
<td>一段上の基準に改修 5 万戸/年</td>
<td>一段上の基準に改修 5 万戸/年</td>
<td>一段上の基準に改修 5 万戸/年</td>
</tr>
</tbody>
</table>

表 4.1.2 ストック住宅断熱基準適合率

<table>
<thead>
<tr>
<th>ストック基準達成率</th>
<th>改次世代基準</th>
<th>次世代基準</th>
<th>新基準</th>
<th>旧基準</th>
<th>旧基準未満</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>戸建</td>
<td>3%</td>
<td>14%</td>
<td>54%</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td>集合</td>
<td>1%</td>
<td>27%</td>
<td>37%</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td>2%</td>
<td>23%</td>
<td>52%</td>
<td>37%</td>
</tr>
<tr>
<td>2020</td>
<td>BAU</td>
<td>戸建</td>
<td>1%</td>
<td>8%</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>集合</td>
<td>3%</td>
<td>46%</td>
<td>27%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td>1%</td>
<td>5%</td>
<td>34%</td>
<td>36%</td>
</tr>
<tr>
<td>環境省</td>
<td>戸建</td>
<td>3%</td>
<td>17%</td>
<td>17%</td>
<td>42%</td>
</tr>
<tr>
<td></td>
<td>集合</td>
<td>5%</td>
<td>18%</td>
<td>31%</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td>4%</td>
<td>17%</td>
<td>23%</td>
<td>34%</td>
</tr>
<tr>
<td>最尤</td>
<td>戸建</td>
<td>2%</td>
<td>14%</td>
<td>18%</td>
<td>44%</td>
</tr>
<tr>
<td></td>
<td>集合</td>
<td>17%</td>
<td>32%</td>
<td>26%</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td>1%</td>
<td>15%</td>
<td>24%</td>
<td>36%</td>
</tr>
</tbody>
</table>

注)フロー基準適合率実績値は、「住宅用グラスウール断熱材普及率調査結果」（硝子繊維協会）、住宅金融公庫における省エネルギー住宅基準適合率（新基準+次世代）及び次世代採用率（割増融資採用率）より住環境計画研究所推計

表 4.1.3 断熱基準別の暖冷房負荷

<table>
<thead>
<tr>
<th>断熱基準別の暖冷房負荷</th>
<th>改次世代</th>
<th>次世代</th>
<th>新基準</th>
<th>旧基準</th>
<th>無断熱</th>
</tr>
</thead>
<tbody>
<tr>
<td>戸建住宅</td>
<td>暖房負荷</td>
<td>0.27</td>
<td>0.38</td>
<td>0.65</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>冷房負荷</td>
<td>0.78</td>
<td>0.78</td>
<td>0.83</td>
<td>0.89</td>
</tr>
<tr>
<td>集合住宅</td>
<td>暖房負荷</td>
<td>0.25</td>
<td>0.36</td>
<td>0.55</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>冷房負荷</td>
<td>0.77</td>
<td>0.77</td>
<td>0.85</td>
<td>0.89</td>
</tr>
</tbody>
</table>
表 4.1.4 住宅の断熱性能上の効率指標シナリオ想定値

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>BAU</th>
<th>技術進展 (環境省準拠ケース)</th>
<th>技術進展 (最優ケース)</th>
</tr>
</thead>
<tbody>
<tr>
<td>戸建暖房断熱基準*1</td>
<td>0.83</td>
<td>0.78</td>
<td>0.73</td>
<td>0.76</td>
</tr>
<tr>
<td>集合暖房断熱基準*1</td>
<td>0.76</td>
<td>0.70</td>
<td>0.64</td>
<td>0.67</td>
</tr>
<tr>
<td>戸建冷房断熱基準*1</td>
<td>0.91</td>
<td>0.89</td>
<td>0.88</td>
<td>0.89</td>
</tr>
<tr>
<td>集合冷房断熱基準*1</td>
<td>0.92</td>
<td>0.90</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>HP暖房/全暖房</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>床暖房断熱指標*2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*1: 断熱基準とは、無断熱の住宅の空調負荷を 1.0 とした場合の指標
*2: 床暖房指標とは、次世代の断熱性能の住宅に対し、床暖房負荷を想定した指標（次世代住宅の暖房性能 0.32×床暖房負荷 3.12）
4.2 家電製品の高効率化

家電製品の高効率化として、エアコン、冷蔵庫、テレビ、照明の効率改善を想定する。

エアコン、冷蔵庫、テレビは表4.2.1に示す想定内容に基づき、2020年のストック効率をそれぞれ算出する。

照明の想定内容を表4.2.2に示す。BAUと最尤ケースでは、異なる照明設備ごとに住戸あたりの照明用エネルギー消費量と普及量を算出し、ストックの効率指標を算出する。照明設備の仕様は表4.2.3に示す4パターンであり、最も省エネの設備は全てLEDの設置を想定する。設備仕様ごとのストック普及量は断熱基準達成率（表4.1.2）を参考にBAU、最尤ケースで異なる値を設定する。

上記想定の下推計されたシナリオ想定値を表4.2.4に示す。

<table>
<thead>
<tr>
<th>家電製品高効率化の想定内容（エアコン、冷蔵庫、テレビ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイプ</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>エアコン</td>
</tr>
<tr>
<td>冷蔵庫</td>
</tr>
<tr>
<td>テレビ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明</th>
<th>環境省準拠ケース</th>
<th>最尤ケース</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイプ</td>
<td>BAU</td>
<td>環境省準拠ケース</td>
</tr>
<tr>
<td>照明</td>
<td>ストック効率が現状の1.8倍</td>
<td>住宅事業建築主の判断基準の照明用エネルギー消費量計算方法にに基づき、戸建、集合住宅のモデルプランにおける照明用エネルギー消費量を異なる設備仕様ごとに算出する。設備仕様ごとのストック普及量は断熱基準達成率（表4.1.2）を参考に算出する。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明設備仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>レベル 0</td>
</tr>
<tr>
<td>レベル 1</td>
</tr>
<tr>
<td>レベル 2</td>
</tr>
<tr>
<td>レベル 3</td>
</tr>
</tbody>
</table>

注：エネルギー消費量の左側の数値は戸建住宅、右側は集合住宅の計算値

8 経済産業省 総合資源エネルギー調査会 省エネルギー基準部会 第1回エアコンディショナー判断基準小委員会（平成17年8月8日）資料より
9 (財)建築環境・省エネルギー機構「住宅事業建築主の判断の基準におけるエネルギー消費量計算方法の解説」

32
表 4.2.4 ストック効率指標の設定値

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BAU</td>
<td>技術進展 (環境省準拠ケース)</td>
</tr>
<tr>
<td>暖房 COP*1</td>
<td>3.04</td>
<td>3.77</td>
</tr>
<tr>
<td>冷房 COP</td>
<td>3.96</td>
<td>4.68</td>
</tr>
<tr>
<td>冷蔵庫 [kWh/年]</td>
<td>739</td>
<td>692</td>
</tr>
<tr>
<td>テレビ [W]</td>
<td>120</td>
<td>161</td>
</tr>
<tr>
<td>照明</td>
<td>1.00</td>
<td>0.93</td>
</tr>
</tbody>
</table>

*1: 暖房 COP は実働効率を考慮し、推計ストック COP に 0.7 を乗じている。
4.3 高効率給湯機/太陽熱温水器・ソーラーシステム/太陽光発電の普及

（1）ストック導入量

高効率給湯機、太陽熱温水器・ソーラーシステム、太陽光発電の普及を想定する。表 4.3.1 に BAU、環境省準拠ケースの想定内容を示す。環境省準拠ケースは高効率給湯機、太陽熱温水器・ソーラーシステムの合計普及台数が約 4,420 万台であり、全国世帯数に近い目標値となっている。しかし、実際には、集合住宅の PS（パイプシャフト）に給湯器を設置した世帯などは高効率給湯機への代替が難しく、環境省の目標導入台数は実現の困難な値となっている。そのため、最尤ケースでは実際の導入にあたり、普及の障壁となる諸条件を考慮した上で 2020 年の導入量を推計する。最尤ケースにおける普及想定内容を表 4.3.2 に示す。

なお、太陽熱温水器・ソーラーシステムの普及に関しては、日本ガス体エネルギー普及促進協議会が行政、有識者、関係団体、事業者等と連携し設立した「ソーラーエネルギー利用推進フォーラム」においてソーラーシステムを中心とした普及が検討されており、戸建住宅にはソーラーシステムのみが導入されると想定する。また、集合住宅用の太陽熱温水器として、東京ガス株式会社より販売されている太陽熱利用ガス温水システム「SOLAMO」の普及を想定する。

| 表 4.3.1 高効率給湯機等の想定内容（BAU, 環境省準拠ケース） |
|-----------------|-------------------|
| 潜熱回収型給湯器 | 過去実績値の単回帰分析より |
| エコキュート | 2020 年ストック 2,500 万台 |
| 家庭用コージェネレーションシステム | 2020 年のストック 1,600 万台 |
| ソーラーシステム/集合住宅向け太陽熱利用ガス温水システム | 2020 年ストック 230 万台 |
| 太陽光発電 | 2020 年ストック 2,440 万 kW (990 万戸) |

| 表 4.3.2 高効率給湯機等の想定内容（最尤ケース） |
|-----------------|-------------------|
| 普及量 | 想定内容 |
| 潜熱回収型給湯器 | 2020 年ストック 2,318 万台 | 太陽光発電が 50 万円 |
| エコキュート | 2020 年ストック 789 万台 | ・経済産業省 「長期エネルギー需要見通し（再計算）」で、業界目標値を考慮に導入量を算出。
| 家庭用コージェネレーションシステム | 2020 年ストック 222 万台 | ・潜熱回収型給湯器については、集合住宅の PS 設置世帯への導入はないものと想定し、既築の 5 割を占めるベランダ設置世帯と新築集合住宅への普及が進むものとする。
| ソーラーシステム/集合住宅向け太陽熱利用ガス温水システム | 2020 年ストック 2,379 万円 | ・自然循環型の風呂釜設置世帯には、設置工事が困難であることより高効率給湯器が代替しないと想定する。
| 太陽光発電 | ストック 1,960kW (530 万戸) | 経済産業省「長期エネルギー需要見通し（再計算）」
上記の想定内容の下、建て方×世帯類型の8区別普及台数を算出する。BAU、環境省準拠ケース、最尤ケースそれぞれの普及台数を表4.3.3に示す。

建て方×世帯類型別には、各年の世帯数または給湯消費量を用いて按分する。石油を熱源とする給湯器は集合住宅への導入を考慮しない。

エコキュートは、負荷の小さい単身世帯への導入は考慮しない。

家庭用コージェネレーションシステムは、2007年、2020年BAUは世帯数の多い戸建の夫婦+子、その他世帯への導入を想定する。2020年の環境省準拠ケース、最尤ケースの両ケースでは、集合住宅への導入と夫婦のみ世帯への導入も考慮する。

ソーラーシステムの普及については、補助ボイラとしてエコジョーズの設置を想定するが、表中のエコジョーズ普及台数は、ソーラーシステムとの併設分をあわせた値である。

太陽光発電は、1戸あたりの導入容量を戸建約3.7kW、集合約0.6kWとして戸建、集合の導入戸数を算出する。太陽光発電の集合住宅への導入は、現在のところパネル、系統が住戸ごとに区分された小規模多数連携システムが主となっている。そのため、例えば分譲集合住宅では、1戸あたりの販売価格が太陽光発電設置分を含むと非常に高額となり、売主にとってリスクが高いため、本推計では今後の集合住宅への普及は、集合住宅オーナーの売電のみを目的とした設置が進むと想定し、家庭への給電は考慮しない。

10 5階建・25戸/棟・延床面積50㎡戸の集合住宅への導入を想定（総務省「住宅土地統計調査」より集合住宅の平均値）。屋根面積の5割に設置、設置角度30度、1kWの発電に要する面積を9㎡と仮定すると、1戸あたりの導入量は約0.6kWとなる。
<table>
<thead>
<tr>
<th>全国</th>
<th>年</th>
<th>体</th>
<th>戸建</th>
<th>単身</th>
<th>夫婦のみ</th>
<th>夫婦+子</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC</td>
<td>2007</td>
<td>1,239</td>
<td>1,109</td>
<td>129</td>
<td>225</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
一方で、普及障壁を考慮した最尤ケースでは、環境省準拠ケースと比較し、集合住宅全世帯、また戸建の単身世帯において、高効率給湯器、太陽熱温水器の普及率が進展しない様子が窺える。

図 4.3.1 2020 年の建て方×世帯類型別給湯機普及率（BAU）
注）「EC」：エコキュート、「EJ」：潜熱回収型給湯器、「CGS」：家庭用コージェネレーションシステム、「SWH/SS」：太陽熱温水器及びソーラーシステム
注）エコジョーズ普及率は、ソーラーシステムとの併設分を除く。

図 4.3.2 2020 年の建て方×世帯類型別給湯機普及率（環境省準拠ケース）
注）「EC」：エコキュート、「EJ」：潜熱回収型給湯器、「CGS」：家庭用コージェネレーションシステム、「SWH/SS」：太陽熱温水器及びソーラーシステム
注）エコジョーズ普及率は、ソーラーシステムとの併設分を除く。
図 4.3.3 2020 年の建て方×世帯類型別給湯機普及率（最尤ケース）
注）「EC」：エコキュート、「EJ」：潜熱回収型給湯器、「CGS」：家庭用コージェネレーションシステム、「SWH/SS」：太陽熱温水器及びソーラーシステム
注）エコジョーズ普及率は、ソーラーシステムとの併設分を除く。

（2）給湯機の効率設定値
住環境計画研究所実施の既往調査より、2020 年における給湯機の機器効率を表 4.3.4 に示す値とする。

表 4.3.4 2020 年の機器効率の設定値

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>給湯</td>
<td></td>
</tr>
<tr>
<td>従来型ガス給湯機効率</td>
<td>0.80</td>
</tr>
<tr>
<td>エコキュート効率</td>
<td>3.0</td>
</tr>
<tr>
<td>エコジョーズ効率</td>
<td>0.9</td>
</tr>
<tr>
<td>エネファーム（FC）</td>
<td></td>
</tr>
<tr>
<td>発電量/住宅全体電力</td>
<td>0.5</td>
</tr>
<tr>
<td>発電効率</td>
<td>0.37</td>
</tr>
<tr>
<td>排熱回収効率</td>
<td>0.41</td>
</tr>
<tr>
<td>バックアップボイラー効率</td>
<td>0.8</td>
</tr>
<tr>
<td>床暖房効率</td>
<td>0.83</td>
</tr>
<tr>
<td>エコウィル（EW）</td>
<td></td>
</tr>
<tr>
<td>発電量/住宅全体電力</td>
<td>0.3</td>
</tr>
<tr>
<td>発電効率</td>
<td>0.27</td>
</tr>
<tr>
<td>排熱回収効率</td>
<td>0.53</td>
</tr>
<tr>
<td>バックアップボイラー効率</td>
<td>0.8</td>
</tr>
<tr>
<td>床暖房効率</td>
<td>0.83</td>
</tr>
</tbody>
</table>

出所：住環境計画研究所調べ

（3）太陽光発電/ソーラーシステム/集合住宅用太陽熱温水器の省エネ量
1）太陽光発電
1kW あたりの発電量及び売電電力量割合は、新エネルギー財団資料の 1995 年から 2005 年度までの全国実績値の平均を用いる。3.7kW の太陽光発電を設置した場合、1 戸あたりの省エネ量は 1,612kWh/
年となる。なお、1戸あたりの発電出力は、経済産業省「長期エネルギー需給見通し（再計算）」の導入目標値及び導入目標戸数から算出する（2020年ストック導入量 1960万 kW・530万戸から算出）。なお、本調査では売電量を家庭用の削減効果として計上することとする。

表 4.3.5 太陽光発電設置による省エネ効果

kWあたりの発電量（95〜05年度平均）※1	990 kWh/年・kW
太陽光発電出力※2	3.7 kW
発電量（①×②）	3,663 kWh/年
発電量に対する売電比率※1（95〜05年度平均）	56%
発電量に対する自家消費比率	44%
省エネ効果（自家消費分）	1,612 kWh/年

出所：※1 新エネルギー財団 都道府県別 kW当たりの年間発生電力量と年間売電電力量（1995年4月〜2005年3月）
※2 経済産業省「長期エネルギー需給見通し（再計算）」（2009年8月）

2）ソーラーシステム

ソーラーシステム設置による省エネ効果は、（財）ソーラーシステム振興協会の全国平均年間集熱面日射量とシステム効率、また住環境計画研究所推計の給湯使用率を用いる。全国平均年間集熱面日射量を130万 kcal/㎡・年、集熱面積を6 ㎡、システム効率を0.4とし、集熱量に対し給湯に用いる割合を84%と想定すると、ソーラーシステム導入による省エネ量は1戸あたり10,923MJ/年となる。

表 4.3.6 ソーラーシステム設置による省エネ効果

全国平均年間集熱面日射量	1,300,000 kcal/㎡・年
ジュール換算係数	4.186 kJ/kcal
集熱面積	6 ㎡
システム効率	0.4
集熱量（①×②×③×④）	13,060 MJ/年
使用率	84%
省エネ量	10,923 MJ/年

全国平均年間集熱面日射量、システム効率：ソーラーシステム振興協会
給湯使用率：住環境計画研究所推計

3）集合住宅向け太陽熱利用ガス温水システム

集合住宅向け太陽熱利用ガス温水システムの設置による省エネ効果は、東京ガス株式会社の販売する「SOLAMO」の省エネ効果公表値を参照する。具体的には、集合住宅向け太陽熱利用ガス温水システムを利用することにより、標準的な3人家族の給湯使用量の約16%を太陽熱で賄うものと想定されている。加えて、1日あたり給湯使用量360L、出湯温度40℃、給水温度18℃との想定から、1日あたりに太陽熱温水器で賄うエネルギー消費量は5.3MJ/日となり、年間の省エネ量は1,945MJ/年と算出されている。
表 4.3.7 集合住宅向け太陽熱利用ガス温水システム設置による省エネ効果

<table>
<thead>
<tr>
<th>項目</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>給湯使用量 ①</td>
<td>360 L</td>
</tr>
<tr>
<td>太陽熱で賄う割合 ②</td>
<td>16%</td>
</tr>
<tr>
<td>出湯温度 ③</td>
<td>40℃</td>
</tr>
<tr>
<td>給水温度 ④</td>
<td>18℃</td>
</tr>
<tr>
<td>ジュール換算係数 ⑤</td>
<td>4,186 J/cal</td>
</tr>
<tr>
<td>1日あたり省エネ量 ⑥*(①×②×(③−④)×⑤/1000) ⑥</td>
<td>5.3 MJ/日</td>
</tr>
<tr>
<td>年間省エネ量 ⑥*365</td>
<td>1,945 MJ/年</td>
</tr>
</tbody>
</table>

出所：東京ガス株式会社 プレスリリース (http://www.tokyo-gas.co.jp/Press/20100205-01.html)

4.4 省エネナビの普及

省エネナビ普及による省エネ効果を推計する。省エネナビ普及率の想定値を表 4.4.1 に示す。BAU ケース、最尤ケースの普及率は住環境計画研究所実施の既往調査結果を参照し、それぞれ 10%、20% と想定する。環境省ケースでは普及率 80% と、省エネナビの普及が大幅に進展する。

省エネナビ設置の省エネルギー効果は、NEDO 技術開発機構「省エネルギー設備等導入促進情報公開対策等事業「住宅におけるエネルギー使用に係わる実態調査及び情報提供事業」2005 実施内容紹介」（平成 18 年 1 月）を参考に、一般世帯に対し省エネナビ設置世帯は、年間エネルギー消費量が 5% 削減されると想定する。

表 4.4.1 省エネナビの普及率

<table>
<thead>
<tr>
<th>年代</th>
<th>BAU</th>
<th>技術進展 (環境省準拠ケース)</th>
<th>技術進展 (最尤ケース)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0%</td>
<td>10%</td>
<td>80%</td>
</tr>
<tr>
<td>2020</td>
<td>0%</td>
<td>10%</td>
<td>20%</td>
</tr>
</tbody>
</table>

出所：BAU, 最尤ケース：住環境計画研究所調べ

11 NEDO 技術開発機構，省エネルギー設備等導入促進情報公開対策事業
4.5 次世代自動車の普及

次世代自動車の普及として、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車の普及を想定する。具体的な想定内容を表4.5.1に示す。また、普及想定に基づき試算された2020年のストック台数を表4.5.2に示す。エネルギー消費の計算に用いる乗用車の燃費については表4.5.3に示す値を用いる。

表4.5.1 次世代自動車普及の想定内容

<table>
<thead>
<tr>
<th>想定内容</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>HVは過去実績の単回帰分析より2020年のフロー台数を推計。EV、PHVの販売は行われないものとする。</td>
</tr>
<tr>
<td>環境省準拠ケース</td>
<td>2020年に下表のフロー台数、ストック台数を達成するものとする。環境省「地球温暖化対策に係わる中長期ロードマップ」次世代自動車導入目標数を参照</td>
</tr>
<tr>
<td>次世代自動車普及の想定内容</td>
<td></td>
</tr>
<tr>
<td>EV 70万台</td>
<td>ストック</td>
</tr>
<tr>
<td>HV 120万台</td>
<td></td>
</tr>
<tr>
<td>PHV 40万台</td>
<td></td>
</tr>
</tbody>
</table>

注) EV: 電気自動車、HV: ハイブリッド自動車、PHV: プラグインハイブリッド自動車
出所: ハイブリッド自動車の過去実績値は(社)次世代自動車振興センターより 環境省「地球温暖化対策に係わる中長期ロードマップ」(2010年3月) 経済産業省「次世代自動車戦略2010」(2010年4月)

表4.5.2 乗用車のストック台数

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BAU</td>
<td>環境省準拠ケース</td>
</tr>
<tr>
<td>EV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HV</td>
<td>421</td>
<td>2,156</td>
</tr>
<tr>
<td>PHV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>従来車</td>
<td>56,667</td>
<td>57,081</td>
</tr>
<tr>
<td>合計</td>
<td>57,024</td>
<td>59,237</td>
</tr>
</tbody>
</table>

注) EV: 電気自動車、HV: ハイブリッド自動車、PHV: プラグインハイブリッド自動車
乗用車保有台数合計はマクロモデルの計算結果
<table>
<thead>
<tr>
<th></th>
<th>燃費</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV</td>
<td>8 [km/kWh]</td>
</tr>
<tr>
<td>HV</td>
<td>30 [km/L]</td>
</tr>
<tr>
<td>PHV</td>
<td>40 [km/L], 10 [km/kWh]</td>
</tr>
<tr>
<td>普通乗用車</td>
<td>15 [km/L]</td>
</tr>
<tr>
<td>軽自動車</td>
<td>20 [km/L]</td>
</tr>
</tbody>
</table>

注）EV：電気自動車、HV：ハイブリッド自動車、PHV：プラグインハイブリッド自動車
出所：経済産業省「次世代自動車用電池の将来に向けた提言」(2006年8月)
第5章 シナリオ想定による2020年の将来予測結果

前章にて想定したシナリオにおける将来予測結果を示す。
ここでは、シナリオ想定による推計結果を総量、原単位で示し、その傾向を分析する。さらに、二酸化炭素削減量についても結果を併記する。

5.1 家庭用

(1) BAU

技術進展を織り込んだ建て方×家族類型別種別エネルギー消費原単位のシナリオ推計結果を図5.1.1に示す。図中のS1は環境省準拠ケース、S2は最尤ケースの結果である。

2020年 BAU環境省準拠ケース（以下、「20BAU_S1」）のシナリオ結果の総世帯平均を見ると、合計25,66GJ、電気14.7GJ、都市ガス4.7GJとなる。BAU比では合計▲26%、電気▲15%、都市ガス▲37%となり、シナリオで見込んだ高効率給湯機の普及拡大の影響によりさらに減少していることが分かる。

8区分別に見ると、「20BAU_S1」はBAUに対して全ての世帯で減少しており、特に、戸建の単身世帯がBAU比で▲36%と減少が大きくなっている。

2020年 BAU最尤ケース（以下、「20BAU_S2」）のシナリオ結果の総世帯平均を見ると、合計30.0GJ、電気15.7GJ、都市ガス6.2GJとなる。BAU比では合計▲14%、電気▲9%、都市ガス▲16%となる。

8区分別に見ると、「20BAU_S2」はBAUに対して全ての世帯で減少しており、単身を除く戸建世帯においてBAU比で▲17%程度と減少が大きい。いずれのケースも高効率給湯器の増加が、原単位減少の大きな要因となっている。

図5.1.2にエネルギー種別消費量、表5.1.1に家庭用のエネルギー起源CO2排出量を示す。本調査では、太陽光発電の売電分の電力量は、供給先が家庭に限られないことから、家庭用エネルギー消費量への影響は考慮しない。そのため、太陽光発電売電量は、図5.1.2では図中の縦軸マイナス側に示す。なお、売電分のCO2削減効果は概念的に既にCO2排出係数に反映されていると見なすことができる。

'20BAU_S1'では合計1,365PJ、電気784PJ、都市ガス248PJとなり、2007年比で合計▲30%、電気▲7%、都市ガス▲40%と消費量は大幅に減少する。なお、売電量は42PJである。'20BAU_S2'では合計1,597PJ、電気834PJ、都市ガス332PJとなり、2007年比で合計▲18%、電気▲2%、都市ガス▲20%と、世帯数の微増が消費量を僅かに押し上げている。'20POU_S2'の売電量は26PJである。

'20POU_S2'では合計1,365PJ、電気784PJ、都市ガス248PJとなり、2007年比で合計▲30%、電気▲7%、都市ガス▲40%と消費量は大幅に減少する。なお、売電量は42PJである。'20BAU_S2'では合計1,597PJ、電気834PJ、都市ガス332PJとなり、2007年比で合計▲18%、電気▲2%、都市ガス▲20%と、世帯数の微増が消費量を僅かに押し上げている。'20POU_S2'の売電量は26PJである。

CO2排出量は2007年1.72億トン、2020BAU1.39億トン（対2007年▲19%、対1990年+21%）である。2020BAU_S1については、対策効果が大きく寄与し、0.88億トン（対2007年▲49%、対1990年▲23%）となる。また、2020BAU_S2のCO2排出量は1.07億トン（対2007年▲38%、対1990年▲7%）である。（排出係数はP13表1.4.2参照）2020BAU_S1は鳩山政権の掲げられた目標値（家庭用は90年比36%削減）に満たない結果となる。
図 5.1.1 建て方×家族類型別エネルギー種別消費原単位
※図中の S1 は環境省準拠ケース、S2 は最尤ケース

図 5.1.2 エネルギー種別消費量と CO2 排出量
※図中の S1 は環境省準拠ケース、S2 は最尤ケース
※太陽光発電の売電電力は、供給先が家庭に限らないため、家庭用エネルギー消費量と区別しマイナス軸側に示す。

表 5.1.1 家庭用のエネルギー起原 CO2 排出量（図 5.1.2 に対応）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 排出量</td>
<td>1.15</td>
<td>1.34</td>
<td>1.46</td>
<td>1.72</td>
<td>1.39</td>
</tr>
<tr>
<td>(対 1990 年)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計 BAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計 BAU_S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td>合計 BAU_S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.07</td>
</tr>
<tr>
<td>CO2 排出量BAU (環境省準拠ケース)</td>
<td></td>
<td></td>
<td></td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>CO2 排出量BAU_S1 (環境省準拠ケース)</td>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>CO2 排出量BAU_S2 (環境省準拠ケース)</td>
<td></td>
<td></td>
<td></td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>合計 BAU_S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計 BAU_S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計 BAU_S1 (最尤ケース)</td>
<td></td>
<td></td>
<td></td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>合計 BAU_S2 (最尤ケース)</td>
<td></td>
<td></td>
<td></td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>合計 BAU_S1 (最尤ケース)</td>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>合計 BAU_S2 (最尤ケース)</td>
<td></td>
<td></td>
<td></td>
<td>1.07</td>
<td></td>
</tr>
</tbody>
</table>

[億 t-CO2/年]
（2）POU

技術進展を織り込んだ建て方×家族類型別種別エネルギー消費原単位のシナリオ推計結果を図 5.1.3 に示す。図中の S1 は環境省準拠ケース、S2 は最もケースの結果である。

2020 年 POU 環境省準拠ケース（以下、’20POU_S1）のシナリオ結果の総世帯平均を見ると、合計 23.9GJ 電気 13.5GJ、都市ガス 4.6GJ、となる。POU 比では合計 ▲27%、電気 ▲14%、都市ガス ▲37% となり、シナリオで見込んだ高効率給湯機の普及拡大の影響によりさらに減少していることが分かる。

区分別に見ると、’20POU_S1 は POU に対して全ての世帯で減少しており、特に、戸建の単身世帯が POU 比で ▲36%と減少が大きくなっている。

2020 年 POU 最尤ケース（以下、’20POU_S2）のシナリオ結果の総世帯平均を見ると、合計 28.0GJ、電気 14.3GJ、都市ガス 6.2GJ となる。POU 比では合計 ▲14%、電気 ▲9%、都市ガス ▲16% となる。

区分別に見ると、’20POU_S2 は POU に対して全ての世帯で減少しており、単身を除く戸建世帯において POU 比で ▲17%程度と減少が大きい。いずれのケースも高効率給湯器の増加が、原単位減少の大きな要因となっている。

図 5.1.4 にエネルギー種別消費量、表 5.1.2 に家庭用のエネルギー起源 CO2 排出量を示す。’20POU_S1 では合計 1,273PJ、電気 717PJ、都市ガス 245PJ となり、2007 年比で合計 ▲35%、電気 ▲15%、都市ガス ▲41% と消費は大幅に減少する。なお売電量は 42PJ である。’20POU_S2 では合計 1,494PJ、電気 761PJ、都市ガス 328PJ となり、2007 年比で合計 ▲24%、電気 ▲10%、都市ガス ▲21% と、世帯数の微増が僅かに消費量を押し上げている。’20POU_S2 の売電量は 26PJ である。

CO2 排出量は 2007 年 1.72 億トン、2020POU1.14 億トン（対 2007 年 ▲34%、対 1990 年 ▲1%）となる。2020POU_S1 については、対策効果が大きく寄与し、0.71 億トン（対 2007 年 ▲59%、対 1990 年 ▲38%）である。また、2020POU_S2 の CO2 排出量は 0.87 億トン（対 2007 年 ▲49%、対 1990 年 ▲24%）である（排出係数は P13 表 1.4.2 参照）。POU ケースかつ環境省準拠ケースの場合（2020POU_S1）にのみ、鸠山政権の掲げられた目標値（家庭用は対 90 年比 36%削減）が達成できる結果となった。
図 5.1.3 建て方×家族類型別エネルギー一種別消費原単位
※図中の S1 は環境省準拠ケース、S2 は最尤ケース
※太陽光発電の売電電力は、供給先が家庭に限らないため、家庭用エネルギー消費量と区別しマイナス軸側に示す。

図 5.1.4 エネルギー一種别消費量と CO2 排出量
※図中の S1 は環境省準拠ケース、S2 は最尤ケース

表 5.1.2 家庭用のエネルギー起原 CO2 排出量（図 5.1.4 に対応）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 排出量（対 1990 年）</td>
<td>1.15</td>
<td>1.34</td>
<td>1.46</td>
<td>1.72</td>
<td>1.14</td>
</tr>
</tbody>
</table>

POU POU_S1 POU_S2
（環境省準拠ケース） （最尤ケース）

（▲1%） （▲38%） （▲24%）
5.2 乗用車

運輸部門のうち、家庭で使われる乗用車について、次世代自動車の普及が及ぼす影響について分析を行う。'20BAU では 2007PJ となり、1990 年比 +24%、環境省準拠ケースでは 1856PJ （+15%）、最尤ケースでは 1905PJ （+18%）、CO2 排出量については 1990 年比で見ると、'20BAU +24%、環境省準拠ケース +19%、最尤ケース +21% となった。次世代自動車の普及により CO2 排出量を 2～4% 程度押し下げているものの、2020 年時点での影響は小さい。

図 5.2.1 乗用車のエネルギー種別消費量
※図中の S1 は環境省準拠ケース、S2 は最尤ケース

表 5.2.1 乗用車のエネルギー起原 CO2 排出量
[億 t-CO2/年]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 排出量</td>
<td>1.08</td>
<td>1.37</td>
<td>1.53</td>
<td>1.45</td>
<td>1.35</td>
</tr>
</tbody>
</table>
第6章 必要な投資金額に関する検討

累積追加投資金額は、

\[TC = \sum_{a=1}^{n} \sum_{t=k}^{2020} (\Delta C_{a,k} \times F_{a,k}) \]

\[\Delta C = C_{adv} - C_{ex} \]

1) TC : 累積追加投資金額

2) \(\Delta C \) : 追加投資金額

3) \(C_{adv} \) : 対策機器・設備のイニシャルコスト

4) \(C_{ex} \) : 従来機器・設備のイニシャルコスト

5) \(F \) : 対策機器・設備の導入台数

6) \(a \) : 対策機器・設備の種類

7) \(t \) : 年

また CO2 削減量は、

\[\Delta TLCO2 = \sum_{a=1}^{n} (\Delta CO2_a \times S_a) \]

\[\Delta CO2 = CO2_{adv} - CO2_{ex} \]

1) \(\Delta TLCO2 \) : CO2 総削減量

2) \(\Delta CO2 \) : 一機器当たりのCO2削減量

3) \(CO2_{adv} \) : 対策機器による一機器当たりのCO2排出量

4) \(CO2_{ex} \) : 従来機器による一機器当たりのCO2排出量

5) \(S \) : 2020年時点の対策機器のストック台数

上記の累積追加投資金額と CO2 削減量（ここでは2020年時点における1年分の削減量）から算出される削減費用（CO2排出量を1単位削減する時に必要となる追加投資金額）は、

\[AC = -\frac{TC}{\Delta TLCO2} \]

AC : 削減費用

とする。
6.1 導入する省エネルギー・新エネルギー対策のコスト想定
シナリオで想定した対策として導入する機器、設備にかかる追加コストについて示す。なお、補助金、税制優遇等のインセンティブは結果的に家庭に帰属する。よって、追加コストの検討に当たってインセンティブによる家庭の負担減については無視している。

6.1.1 家電製品
（1）エアコン、冷蔵庫、テレビ
価格.comに掲載されているエアコン813機種のうち、冷房能力が2.8kWクラスであり、価格、COPの記載のあるエアコン65機種を対象とし効率当たりの価格を算出、この全エアコン平均と、最高効率クラスである「★★★★★」との差を、高効率エアコン購入時の追加投資コストとする。
冷蔵庫については、全サンプル181機種に対して、重回帰分析を行い年間消費電力量当たりの追加投資金額を算出した。説明変数は容量、年間消費電力量とした。テレビについても冷蔵庫と同様の方法を用いて追加投資金額を算出した。説明変数はテレビ画面のサイズ、定格消費電力とし、サンプル数209に対して行った。
なお、将来については、現在のエアコンマーケットの構造が変わらないと仮定し、価格は一定と想定した。

| 表6.1.1 家電製品の追加投資金額の想定 |
|---|---|---|---|
| | エアコン | 冷蔵庫 | テレビ |
| 単位 | 円/COP | 円/kWh | 円/W |
| 2010年 | 3,200 | 120 | 180 |
| 2020年 | 3,200 | 120 | 180 |

（2）照明
照明は白熱灯、蛍光灯、LED別に価格を想定する。また価格に影響を及ぼす光束量についても考慮する。
現状の価格想定の参考とした種類は、下記のとおりである。
白熱灯：≪東芝,100V,ホワイトランプ≫、≪東芝(TOKI),110V,ホワイトランプ≫
蛍光灯：≪ナショナル,パルックボールプレミア≫
LED：≪東芝,一般電球形LEDランプ≫
将来の価格については、白熱灯、蛍光灯は現状価格のままとする。LEDについては、(財)光産業技術振興協会公表の白色LEDデバイス技術ロードマップ12を参考に、2020年の価格が2009年に対し4分の1になると想定する。価格差は代替される照明台数の加重平均値で算出する。

12 (財)光産業技術振興協会 「省エネルギー技術戦略に関する調査」 (2008年3月)
表6.1.2 照明のイニシャルコストの想定

<table>
<thead>
<tr>
<th></th>
<th>白熱灯</th>
<th>蛍光灯</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009年</td>
<td>0.3</td>
<td>1.2</td>
<td>7.0</td>
</tr>
<tr>
<td>2020年</td>
<td>0.3</td>
<td>1.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

（3）省エネナビ

省エネナビの価格は、現在の市場価格を参考に現状3万円/戸とし、将来の価格は1/3の1万円/戸と想定する。

表6.1.3 省エネナビのイニシャルコストの想定

<table>
<thead>
<tr>
<th></th>
<th>省エネナビ価格</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010年</td>
<td>30,000</td>
</tr>
<tr>
<td>2020年</td>
<td>10,000</td>
</tr>
</tbody>
</table>

6.1.2 住宅の断熱性能向上

（1）新築住宅

追加投資コストの対象となる住宅は、次世代基準（H11基準）住宅、改次世代基準（H11基準超）住宅とする。新築市場では新基準（H4基準）程度の住宅が平均と想定し、新築基準住宅との価格差を追加投資コストと想定する。なお次世代基準策定時のコスト試算時には250万円程度であったが、現状での次世代基準住宅はサッシ等の価格低減を考慮し、200万円と想定する。改次世代基準住宅は250万円と想定する。将来については、過去10年での価格低下率の半分が更に価格低下すると想定し、2009年の1割減と想定する。

表6.1.4 新築住宅の追加投資金額の想定

<table>
<thead>
<tr>
<th></th>
<th>次世代基準住宅</th>
<th>改次世代基準住宅</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009年</td>
<td>2,000,000</td>
<td>2,500,000</td>
</tr>
<tr>
<td>2020年</td>
<td>1,800,000</td>
<td>2,250,000</td>
</tr>
</tbody>
</table>
（2）断熱改修
既築住宅への断熱改修は、部位の組み合わせによってコストが大きく異なる。ここでは既存調査結果を用いて、導入組み合わせを考え、導入割合はコストメリットにより決まると想定し算出する。将来については新築住宅と同じ価格低下率を見込み1割減とする。

<table>
<thead>
<tr>
<th>断熱改修部位の組み合わせ</th>
<th>円</th>
<th>負荷削減率</th>
</tr>
</thead>
<tbody>
<tr>
<td>天井</td>
<td>300,000</td>
<td>-8%</td>
</tr>
<tr>
<td>天井+最下階床</td>
<td>1,000,000</td>
<td>-13%</td>
</tr>
<tr>
<td>天井+最下階床+開口部</td>
<td>2,600,000</td>
<td>-32%</td>
</tr>
<tr>
<td>天井+外壁+開口部+最下階床</td>
<td>5,300,000</td>
<td>-44%</td>
</tr>
</tbody>
</table>

表 6.1.5 断熱改修の追加投資金額の想定

<table>
<thead>
<tr>
<th></th>
<th>断熱改修</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006年</td>
<td>1,600,000</td>
</tr>
<tr>
<td>2020年</td>
<td>1,440,000</td>
</tr>
</tbody>
</table>

6.1.3 高効率給湯機
（1）エコキュート、潜熱回収型給湯器、エコウィル、エネファーム
実勢価格、業界団体へのヒアリングに基づき、2010年、2020年の価格を想定した。

表 6.1.6 給湯機のイニシャルコストの想定

<table>
<thead>
<tr>
<th></th>
<th>2010年</th>
<th>2020年</th>
</tr>
</thead>
<tbody>
<tr>
<td>機器セット価格</td>
<td>工事費</td>
<td>機器セット価格</td>
</tr>
<tr>
<td>電気温水器</td>
<td>300,000</td>
<td>300,000</td>
</tr>
<tr>
<td>エコキュート</td>
<td>400,000</td>
<td>150,000</td>
</tr>
<tr>
<td>従来型給湯器（ガス、灯油）</td>
<td>254,000</td>
<td>50,000</td>
</tr>
<tr>
<td>潜熱回収型給湯器</td>
<td>304,000</td>
<td>70,000</td>
</tr>
<tr>
<td>エコウィル</td>
<td>592,000</td>
<td>180,000</td>
</tr>
<tr>
<td>エネファーム</td>
<td>2,900,000</td>
<td>500,000</td>
</tr>
<tr>
<td>集合住宅向け太陽熱利用ガス温水システム</td>
<td>1,300,000</td>
<td>500,000</td>
</tr>
</tbody>
</table>

13 エコリフォームコンソーシアム資料
（2）ソーラーシステム
既存の調査結果14より設置面積6㎡相当、工事費込の価格を想定する。将来については、新エネルギー部会資料を参考に65万円と想定する。

<table>
<thead>
<tr>
<th></th>
<th>2010年</th>
<th>2020年</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>機器セット価格</td>
<td>工事費</td>
</tr>
<tr>
<td>ソーラーシステム</td>
<td>800,000</td>
<td></td>
</tr>
</tbody>
</table>

6.1.4 太陽光発電
既存の調査結果15より現状のkW当たりシステム価格（工事費込）を想定し、将来については、2015年にkW当たりシステム価格が半減、その後横這いと想定した。

表6.1.7 太陽光発電のイニシャルコストの価格想定
円/kW

<table>
<thead>
<tr>
<th></th>
<th>太陽光発電システム価格</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010年</td>
<td>700,000</td>
</tr>
<tr>
<td>2015年</td>
<td>350,000</td>
</tr>
<tr>
<td>2020年</td>
<td>350,000</td>
</tr>
</tbody>
</table>

14 住環境計画研究所既往研究結果
15 (財)新エネルギー財団、住宅用太陽光発電システム価格及び発電電力量等について
6.1.5 次世代自動車
経済産業省研究会の調査結果を用いて、ハイブリッド車（以下、HV）、電気自動車（以下、EV）、プラグインハイブリッド車（以下、PHV）の追加投資価格を想定する。なお、運輸部門については家庭で利用する乗用車のみの想定を行う。

表 6.1.8 次世代自動車と従来自動車の対応関係

<table>
<thead>
<tr>
<th>次世代自動車</th>
<th>従来自動車</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV</td>
<td>普通乗用車</td>
</tr>
<tr>
<td>小型 EV</td>
<td>軽自動車</td>
</tr>
<tr>
<td>普通 EV</td>
<td>普通乗用車</td>
</tr>
<tr>
<td>PHV</td>
<td>普通乗用車</td>
</tr>
</tbody>
</table>

(1) ハイブリッド車
2010年の乗用車に掛かる補助金、減税を追加投資コストとし、このコストが2020年になくなると想定する。金額算定の対象乗用車はプリウス L として、車齢13年超車から平成22年度燃費基準達成車へ買い換える場合を想定する。

表 6.1.9 ハイブリッド自動車の補助金、減税金額（プリウス L を想定）

<table>
<thead>
<tr>
<th>名称</th>
<th>金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>エコカー補助金</td>
<td>250,000</td>
</tr>
<tr>
<td>自動車重量税</td>
<td>22,500</td>
</tr>
<tr>
<td>自動車取得税</td>
<td>87,850</td>
</tr>
<tr>
<td>自動車税</td>
<td>19,500</td>
</tr>
<tr>
<td>合計</td>
<td>379,850</td>
</tr>
</tbody>
</table>

表 6.1.10 HV の追加投資金額の想定

<table>
<thead>
<tr>
<th></th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010年</td>
<td>380,000</td>
</tr>
<tr>
<td>2020年</td>
<td>0</td>
</tr>
</tbody>
</table>

16 経済産業省研究会，次世代自動車用電池の将来に向けた提言，2006年8月
（2）電気自動車

EVは小型と普通の2種類について検討する。表6.1.11に小型EVの価格想定を示す。2010年の小型EVの車両価格はi-MiEVを想定する。「電池価格」については、NEDO既存文献17より2008年から2020年でバッテリーコストが1/10になると想定する。また、「その他価格」について、脚注16において将来のコスト低減を見込んでいる場合は、同様に価格が低減するものと想定する。追加投資コストについては該当する次世代自動車の「ベース車価格」との価格差とし、2010年では小型EVの価格差を、2020年では小型EV、普通EVが同数入るものと2価格の平均値を追加投資コストとした。そのため、2020年のベース車価格は追加投資コスト算出のための暫定値である。2011～2019年については線形補間で想定する。

表6.1.11小型EVのイニシャルコストの想定

<table>
<thead>
<tr>
<th></th>
<th>軽自動車</th>
<th>小型 EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010年車両価格</td>
<td>万円</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>398</td>
</tr>
<tr>
<td></td>
<td></td>
<td>182</td>
</tr>
<tr>
<td>電池価格</td>
<td>万円</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>ベース車価格</td>
<td>万円</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>その他価格</td>
<td>万円</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

（3）プラグインハイブリッド車

表6.1.12普通EVのイニシャルコストの想定

<table>
<thead>
<tr>
<th></th>
<th>普通乗用車</th>
<th>普通EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006年車両価格</td>
<td>万円</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>395</td>
</tr>
<tr>
<td>電池価格</td>
<td>万円</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>ベース車価格</td>
<td>万円</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>その他価格</td>
<td>万円</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
</tr>
</tbody>
</table>

表6.1.13PHVのイニシャルコストの想定

<table>
<thead>
<tr>
<th></th>
<th>普通乗用車</th>
<th>普通EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006年車両価格</td>
<td>万円</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>236</td>
</tr>
<tr>
<td>電池価格</td>
<td>万円</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>ベース車価格</td>
<td>万円</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>その他価格</td>
<td>万円</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

17 NEDO, 技術戦略マップ 2009
6.1.6 学習曲線による将来のコスト分析

6.1.1～6.1.5 のコスト想定については、業界団体やメーカーへのヒアリング、研究会資料等より想定したものであるが、ここでは、論理的な価格決定方法である学習曲線を用いて将来のコストを試算する。

（1）学習曲線

学習曲線とは、大量生産により、累積した知識や経験が効率化をもたらすという考え方から出るもので、累積生産量が 2 倍になるとき、生産コストが一定割合だけ低下する。過去の多くの工業製品に関する実測結果から、以下の学習曲線の原理が導き出されている。

・ 累積生産量が 2 倍になるとき、生産コストが一定割合だけ低下する

学習曲線は以下の式で表すことができる。

\[C_n = C_1 X^{-r} \]

ここで、
- \(C_n \) : n番目の単位あたりのコスト
- \(C_1 \) : 1番目の単位あたりのコスト
- \(X \) : 累積生産台数
- \(r \) : 累積生産量に対するコスト減少指数

また、累積生産量が 2 倍になったときのコスト低減効果を習熟率を定義し、下記式で表現できる。

\[F = 2^{-r} \]

\(F \) : 習熟率

学習曲線による分析を行う際の留意点として、ボトムラインコストを把握しておく必要がある。これは、学習曲線が幾何級数的特性を持つためである。また、エアコンやテレビ、冷蔵庫のように、追加機能の付加や、大型化に伴うコスト増加要因については考慮できない点、留意されたい。

（2）学習効果による将来のコスト

習熟率は、各機器によって異なり、また生産段階によっても異なる。ここでは、将来の価格低減の幅を確認するため、習熟率を 0.8, 0.9 の 2 パターン想定して試算を行う。
表 6.1.14 今回想定値と学習曲線によるコストの比較

<table>
<thead>
<tr>
<th></th>
<th>2007年</th>
<th>2020年</th>
<th>今回想定値</th>
<th>最尤ケース</th>
<th>環境省準拠ケース</th>
</tr>
</thead>
<tbody>
<tr>
<td>習熟率</td>
<td></td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>エコキュート</td>
<td>580,000円</td>
<td>450,000円</td>
<td>370,000円</td>
<td>460,000円</td>
<td>330,000円</td>
</tr>
<tr>
<td>エコウィル</td>
<td>770,000円</td>
<td>500,000円</td>
<td>500,000円</td>
<td>610,000円</td>
<td>500,000円</td>
</tr>
<tr>
<td>エネファーム</td>
<td>3,400,000円</td>
<td>700,000円</td>
<td>570,000円</td>
<td>1,310,000円</td>
<td>570,000円</td>
</tr>
<tr>
<td>ソーラーシステム</td>
<td>800,000円</td>
<td>650,000円</td>
<td>500,000円</td>
<td>640,000円</td>
<td>420,000円</td>
</tr>
<tr>
<td>LED</td>
<td>8.0円/lm</td>
<td>1.8円/lm</td>
<td>0.4円/lm</td>
<td>2.0円/lm</td>
<td>0.3円/lm</td>
</tr>
<tr>
<td>ハイブリッドカー</td>
<td>2,400,000円</td>
<td>追加投資のみ想定</td>
<td>940,000円</td>
<td>1,540,000円</td>
<td>860,000円</td>
</tr>
<tr>
<td>EV</td>
<td>4,000,000円</td>
<td>追加投資のみ想定</td>
<td>40,000円</td>
<td>450,000円</td>
<td>40,000円</td>
</tr>
<tr>
<td>プラグインHV</td>
<td>3,300,000円</td>
<td>追加投資のみ想定</td>
<td>40,000円</td>
<td>410,000円</td>
<td>30,000円</td>
</tr>
<tr>
<td>太陽光発電</td>
<td>700,000円</td>
<td>350,000円</td>
<td>290,000円</td>
<td>460,000円</td>
<td>280,000円</td>
</tr>
</tbody>
</table>

※工事費については学習曲線を用いず、ヒアリング等の価格を採用

業界団体へのヒアリング等から想定した価格は、概ね上記範囲に収まっており、以下の検討では、6.1.1～6.1.5で行ったコスト想定に基づいて分析を行う。
6.2 導入機器・設備の削減費用

導入を想定した機器、設備の削減費用を図 6.2.1 に降順に並べて示す。最も削減費用が高いのは高断熱化で約 1,100 万円/t-CO2 である。EV、SOLAMO、CGS が次いで高く、太陽光発電は 86 万円/t-CO2 となる。家電の削減費用は全体的に低く、特に価格低下の大きい照明が、最も低い結果となる。乗用車は現在普及が進んでいる HV の削減費用が最も安い。
6.3 必要な投資金額と家庭の負担に関する検討

（1）追加投資金額

上記想定に基づいた累積追加投資金額を表6.3.1～表6.3.2に示す。なお、中長期ロードマップで示す追加投資金額に対応させ、期間は2011～2020年の10年間の累積とする。住宅断熱化、太陽光発電の累積追加投資額が多い。カテゴリで纏めると、家電製品が3兆円、給湯器で9兆円となり、家庭用全体では35兆円、太陽光発電を含めると44兆円との試算結果となった。また、家庭部門に関連する乗用車を含めると48兆円となる。なお、この時の家庭部門のCO2削減率は1990年比▲23%であり（POUでは▲38%）、中長期ロードマップでは家庭部門1990年比▲36%（表6.4.1参照）と、BAU結果と乖離が見られる。なお、中長期ロードマップの想定内容が明確に示されているわけではないため、ここで試算した結果の比較には注意が必要である。
表 6.3.1 累積追加投資金額（環境省準拠ケース）

<table>
<thead>
<tr>
<th>機器・設備名称</th>
<th>Category1</th>
<th>Category2</th>
<th>累積コスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅断熱化</td>
<td>住宅断熱化</td>
<td>家庭用</td>
<td>22,786</td>
</tr>
<tr>
<td>太陽光発電</td>
<td>太陽光発電</td>
<td>太陽光発電</td>
<td>8,943</td>
</tr>
<tr>
<td>エコキュート</td>
<td>給湯器</td>
<td>家庭用</td>
<td>2,905</td>
</tr>
<tr>
<td>EV</td>
<td>自動車</td>
<td>自動車</td>
<td>2,670</td>
</tr>
<tr>
<td>ソーラーシステム</td>
<td>給湯器</td>
<td>家庭用</td>
<td>2,285</td>
</tr>
<tr>
<td>CGS</td>
<td>給湯器</td>
<td>家庭用</td>
<td>2,037</td>
</tr>
<tr>
<td>冷蔵庫</td>
<td>家電製品</td>
<td>家庭用</td>
<td>1,156</td>
</tr>
<tr>
<td>SOLAMO</td>
<td>給湯器</td>
<td>家庭用</td>
<td>1,061</td>
</tr>
<tr>
<td>HV</td>
<td>自動車</td>
<td>自動車</td>
<td>1,038</td>
</tr>
<tr>
<td>PHV</td>
<td>自動車</td>
<td>自動車</td>
<td>661</td>
</tr>
<tr>
<td>省エネナビ</td>
<td>家電製品</td>
<td>家庭用</td>
<td>615</td>
</tr>
<tr>
<td>潜熱回収型給湯器</td>
<td>給湯器</td>
<td>家庭用</td>
<td>592</td>
</tr>
<tr>
<td>テレビ</td>
<td>家電製品</td>
<td>家庭用</td>
<td>555</td>
</tr>
<tr>
<td>エアコン</td>
<td>家電製品</td>
<td>家庭用</td>
<td>368</td>
</tr>
<tr>
<td>照明</td>
<td>家電製品</td>
<td>家庭用</td>
<td>219</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td>47,890</td>
</tr>
</tbody>
</table>

表 6.3.2 カテゴリ別累積追加投資金額（環境省準拠ケース）

<table>
<thead>
<tr>
<th>Category1</th>
<th>累積追加投資金額</th>
<th>Category2</th>
<th>累積追加投資金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>給湯器</td>
<td>8,880</td>
<td>家庭用</td>
<td>34,580</td>
</tr>
<tr>
<td>家電製品</td>
<td>2,913</td>
<td>自動車</td>
<td>4,368</td>
</tr>
<tr>
<td>自動車</td>
<td>4,368</td>
<td>太陽光発電</td>
<td>8,943</td>
</tr>
<tr>
<td>住宅断熱化</td>
<td>22,786</td>
<td>合計</td>
<td>47,890</td>
</tr>
<tr>
<td>太陽光発電</td>
<td>8,943</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>47,890</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
最尤ケースの累積追加投資金額を表 6.3.3～表 6.3.4 に示す。環境省準拠ケースと同様に住宅断熱化が最も高く、次いで太陽光発電となる。給湯器、家電製品が共に 3 兆円程度であり、家庭用全体では約 22 兆円、太陽光発電を含めると 29 兆円の累積追加投資金額となる。また、家庭部門に関連する乗用車を含めると 34 兆円となる。なお、この時の家庭部門の CO2 削減率は 1990 年比 ▲7% であり（POU では ▲24%）、POU ケースでも家庭部門の 1990 年比 ▲36% には 12 ポイント不足する厳しい状況であることが窺える。

図 6.3.2 累積追加投資金額（最尤ケース）
<table>
<thead>
<tr>
<th>機器・設備名称</th>
<th>Category1</th>
<th>Category2</th>
<th>累積コスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅断熱化</td>
<td>住宅断熱化</td>
<td>家庭用</td>
<td>15,271</td>
</tr>
<tr>
<td>太陽光発電</td>
<td>太陽光発電</td>
<td>太陽光発電</td>
<td>7,224</td>
</tr>
<tr>
<td>EV</td>
<td>自動車</td>
<td>自動車</td>
<td>3,004</td>
</tr>
<tr>
<td>冷蔵庫</td>
<td>家電製品</td>
<td>家庭用</td>
<td>2,232</td>
</tr>
<tr>
<td>CGS</td>
<td>給湯器</td>
<td>家庭用</td>
<td>1,361</td>
</tr>
<tr>
<td>ソーラーシステム</td>
<td>給湯器</td>
<td>家庭用</td>
<td>1,023</td>
</tr>
<tr>
<td>エコキュート</td>
<td>給湯器</td>
<td>家庭用</td>
<td>888</td>
</tr>
<tr>
<td>HV</td>
<td>自動車</td>
<td>自動車</td>
<td>810</td>
</tr>
<tr>
<td>エアコン</td>
<td>家電製品</td>
<td>家庭用</td>
<td>536</td>
</tr>
<tr>
<td>PHV</td>
<td>自動車</td>
<td>自動車</td>
<td>462</td>
</tr>
<tr>
<td>潜熱回収型給湯器</td>
<td>給湯器</td>
<td>家庭用</td>
<td>402</td>
</tr>
<tr>
<td>テレビ</td>
<td>家電製品</td>
<td>家庭用</td>
<td>308</td>
</tr>
<tr>
<td>省エネナビ</td>
<td>家電製品</td>
<td>家庭用</td>
<td>154</td>
</tr>
<tr>
<td>照明</td>
<td>家電製品</td>
<td>家庭用</td>
<td>63</td>
</tr>
<tr>
<td>SOLAMO</td>
<td>給湯器</td>
<td>家庭用</td>
<td>9</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td>33,748</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category1</th>
<th>累積追加投資金額 [10 億円]</th>
<th>Category2</th>
<th>累積追加投資金額 [10 億円]</th>
</tr>
</thead>
<tbody>
<tr>
<td>給湯器</td>
<td>3,683</td>
<td>家庭用</td>
<td>22,248</td>
</tr>
<tr>
<td>家電製品</td>
<td>3,294</td>
<td>自動車</td>
<td>4,276</td>
</tr>
<tr>
<td>自動車</td>
<td>4,276</td>
<td>太陽光発電</td>
<td>7,224</td>
</tr>
<tr>
<td>住宅断熱化</td>
<td>15,271</td>
<td>合計</td>
<td>33,748</td>
</tr>
<tr>
<td>太陽光発電</td>
<td>7,224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>33,748</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.3.5 個別対策別 CO₂ 削減量と累積追加投資金額

<table>
<thead>
<tr>
<th>対策名</th>
<th>想定内容</th>
<th>効率/普及台数</th>
<th>CO₂削減量</th>
<th>累積追加投資金額</th>
<th>削減費用</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>現状</td>
<td>2020年</td>
<td>対BAU</td>
<td>'11〜'20年</td>
</tr>
<tr>
<td>住宅の断熱性能向上</td>
<td>次世代基準</td>
<td>2015年次世代基準義務化、中長期</td>
<td>-</td>
<td>3%</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>改次世代基準</td>
<td>R&Mの目標価が過大であることを考慮</td>
<td>-</td>
<td>0%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>一段上の基準に改修</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>家電製品の高効率</td>
<td>エアコン</td>
<td>COP理論限界値からの</td>
<td>暖房3.04</td>
<td>冷房3.04</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>冷蔵庫</td>
<td>2020年フロー製品が最も多い</td>
<td>140</td>
<td>148</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>テレビ</td>
<td>2020年フロー製品が最も多い</td>
<td>120</td>
<td>148</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>照明</td>
<td>オールLED住宅が改次世代基準</td>
<td>1.00</td>
<td>0.92</td>
<td>0.399</td>
</tr>
<tr>
<td></td>
<td>高効率給湯器</td>
<td>森型回収型給湯器</td>
<td>78万戸</td>
<td>2,318万戸</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>エコキュート全電化</td>
<td>政府・業界目標値を基に算出、集中</td>
<td>124万</td>
<td>78万</td>
<td>1,911</td>
</tr>
<tr>
<td></td>
<td>家庭用CNG</td>
<td>高圧ガス車は高効率給湯器の</td>
<td>68万</td>
<td>22万</td>
<td>1,516</td>
</tr>
<tr>
<td></td>
<td>SOLAMO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>太陽光発電</td>
<td>現行の「長期エネ需給見通し」</td>
<td>146万W</td>
<td>960万W</td>
<td>7,598</td>
</tr>
<tr>
<td></td>
<td>省エネナビ</td>
<td>豊島計画研究所推計</td>
<td>0%</td>
<td>20%</td>
<td>946</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td>28,945</td>
<td>29,472</td>
<td>26,670</td>
</tr>
</tbody>
</table>

※太陽光発電のCO₂削減量は売電分を含む

<table>
<thead>
<tr>
<th>対策名</th>
<th>想定内容</th>
<th>効率/普及台数</th>
<th>CO₂削減量</th>
<th>累積追加投資金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020年フロー台数における次世代</td>
<td>82%</td>
<td>34%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>自動車製品</td>
<td>自動車製品を含む</td>
<td>14%</td>
<td>22%</td>
<td>23%</td>
</tr>
<tr>
<td>総全電化</td>
<td>総全電化</td>
<td>12%</td>
<td>21%</td>
<td>22%</td>
</tr>
</tbody>
</table>

注1)フローの値
（2）家庭の光熱費削減額
家庭の光熱費削減額について分析を行う。表 6.3.6 に実質エネルギー価格のマクロモデル予測結果、表 6.3.7 に環境省準拠ケースにおける 2020 年断面の光熱費、表 6.3.8 に最尤ケースにおける 2020 年断面の光熱費を示す。2020 年 BAU の世帯当たり光熱費削減額は、環境省準拠ケースで家庭用 4.3 万円、太陽光発電も含めると 5.0 万円となる。最尤ケースでは家庭用 1.8 万円、太陽光発電を含めても 2.3 万円と、世帯当たりで見ると環境省準拠ケースの半分程度の光熱費削減額となる。

表 6.3.6 実質エネルギー価格のマクロモデル予測結果

<table>
<thead>
<tr>
<th>年</th>
<th>電灯</th>
<th>深夜電力</th>
<th>総合</th>
<th>都市ガス</th>
<th>LPG</th>
<th>灯油</th>
<th>ガソリン</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>6.30</td>
<td>2.89</td>
<td>6.05</td>
<td>3.75</td>
<td>5.54</td>
<td>2.43</td>
<td>3.85</td>
</tr>
<tr>
<td>2020BAU</td>
<td>6.14</td>
<td>2.90</td>
<td>5.91</td>
<td>3.91</td>
<td>5.64</td>
<td>2.91</td>
<td>4.46</td>
</tr>
<tr>
<td>2020POU</td>
<td>5.90</td>
<td>2.83</td>
<td>5.71</td>
<td>4.40</td>
<td>6.49</td>
<td>3.72</td>
<td>5.62</td>
</tr>
</tbody>
</table>

表 6.3.7 2020 年断面の光熱費（環境省準拠ケース）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2020(BAU)</th>
<th>2020(POU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>家庭用</td>
<td>-42.5</td>
<td>-43.8</td>
<td></td>
</tr>
<tr>
<td>家庭用 + 太陽光発電</td>
<td>-49.8</td>
<td>-50.8</td>
<td></td>
</tr>
<tr>
<td>乗用車</td>
<td>-13.5</td>
<td>-17.4</td>
<td></td>
</tr>
<tr>
<td>全対策</td>
<td>-63.3</td>
<td>-68.2</td>
<td></td>
</tr>
</tbody>
</table>

※ 2020 年の実質エネルギー価格を想定
※ 太陽光発電の kWh 当たり売電価格は、販売金額と同じと想定

表 6.3.8 2020 年断面の光熱費（最尤ケース）

<table>
<thead>
<tr>
<th></th>
<th>2020(ABA)</th>
<th>2020(POU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>家庭用</td>
<td>-21.7</td>
<td>-22.2</td>
</tr>
<tr>
<td>家庭用 + 太陽光発電</td>
<td>-20.9</td>
<td>-21.3</td>
</tr>
<tr>
<td>乗用車</td>
<td>-9.1</td>
<td>-11.7</td>
</tr>
<tr>
<td>全対策</td>
<td>-35.8</td>
<td>-38.7</td>
</tr>
</tbody>
</table>

※ 2020 年の実質エネルギー価格を想定
※ 太陽光発電の kWh 当たり売電価格は、販売金額と同じと想定
6.4 中長期ロードマップとシナリオ結果の比較

表 6.4.1 に中長期ロードマップ（以下、中長期 RM）の温室効果ガス排出量を示す。今回比較対象としているいわゆる真水で 25％削減の場合、家庭部門で見ると ▲36％となる。

表 6.4.2 に 2020 年の中長期 RM とシナリオ推計結果の比較を示す。CO2 排出量の対 1990 年比を見ると、中長期 RM では ▲36％であるが、同等の普及を見込んだ環境省準拠ケースでは ▲23％と CO2 削減率は 7 割弱となる。これは、中長期 RM の想定内容が明確に示されているわけではないため注意が必要であるが、個々の対策による CO2 削減量を過大に見込んでる可能性がある。また、現実的な導入スピード等を考慮した最優ケースでは ▲7％と、1990 年より減少する水準となるものの、目標とは大きな乖離が見られる。

累積追加投資金額については、中長期 RM と環境省準拠ケースで大きな差異はなく、単価の想定は合計では概ね同程度である。家庭用における 2011～2020 年の累積追加投資金額は、環境省準拠ケースでは 44 兆円、最尤ケースでは 29 兆円となる。

削減費用については、中長期 RM では 48 万円/t・CO2、環境省準拠ケースでは 81 万円/t・CO2 と、1.7 倍となる。これは CO2 削減量による違いであり、上述したとおり対策の省エネ率を過大に見込んでる可能性があるからである。最尤ケースでは 85 万円/t・CO2 と削減費用が若干高めとなるが、これは、価格低下の大きい 2020 年近傍において導入が進むためである。

表 6.4.1 中長期ロードマップの温室効果ガス排出量

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>家庭</td>
<td>127</td>
<td>158</td>
<td>174</td>
<td>172</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81 (▲36％)</td>
</tr>
<tr>
<td>運輸</td>
<td>217</td>
<td>265</td>
<td>257</td>
<td>236</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>227</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>158 (▲27％)</td>
</tr>
<tr>
<td>エネルギー起原</td>
<td>1,059</td>
<td>1,167</td>
<td>1,203</td>
<td>1,138</td>
<td>1,210</td>
</tr>
<tr>
<td>CO2 排出量</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>901</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>855</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>785 (▲26％)</td>
</tr>
</tbody>
</table>

注）表の中にある括弧内の数値は 1990 年の値との比率
注）固定 ：技術の導入状況やエネルギー効率が現状（2005 年）の状態で固定されたまま将来にわたり推移したケース
参照 : これまでの効率改善については既存技術の延長線上で今後も実施すると想定したケース
▲25％① : 2020 年削減目標のうち、国際貢献、吸収源を 10％程度含むケース
▲25％② : 2020 年削減目標のうち、国際貢献、吸収源を 5％程度含むケース
▲25％③ : 2020 年削減目標のうち、国際貢献、吸収源を含まないケース
出所）中長期ロードマップを受けた温室効果ガス排出量の試算、2010 年 3 月、国立環境研究所 AIM プロジェクトチーム
表 6.4.2 2020 年の中長期ロードマップとシナリオ推計結果の比較

<table>
<thead>
<tr>
<th></th>
<th>2020 年</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>対固定</td>
<td>対参照</td>
<td>対 BAU</td>
</tr>
<tr>
<td>CO2 削減量 [100 万 t-CO2]</td>
<td>中長期ロードマップ</td>
<td>100 ¹</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>環境省準拠ケース</td>
<td>- ²</td>
<td>52 ²</td>
</tr>
<tr>
<td></td>
<td>最尤ケース</td>
<td>- ²</td>
<td>29 ²</td>
</tr>
<tr>
<td>累積追加投資金額 [兆円]</td>
<td>中長期ロードマップ</td>
<td>47.8 ³</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>環境省準拠ケース</td>
<td>43.5 ³</td>
<td>(42.0) ⁴</td>
</tr>
<tr>
<td></td>
<td>最尤ケース</td>
<td>29.5 ³</td>
<td>(24.6) ⁴</td>
</tr>
<tr>
<td>削減費用 千円/t-CO2</td>
<td>中長期ロードマップ</td>
<td>478 ⁵</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>環境省準拠ケース</td>
<td>-</td>
<td>814</td>
</tr>
<tr>
<td></td>
<td>最尤ケース</td>
<td>-</td>
<td>850</td>
</tr>
</tbody>
</table>

¹) 固定：技術の導入状況やエネルギー効率が現状（2005 年）の状態で固定されたまま将来にわたって推移したケース
²) 個別対策の積上値
³) 2011～2020 年の追加投資金額
⁴) ()の数値は、単価を算出するための数値であり、2008 年～2020 年の BAU で導入されるであろう追加投資金額を除いた数値である。
⁵) 47.8 兆円／1 億 t-CO2。年の整合がとれていない。
第7章 今後の方策に関する考察

本調査では2020年の家庭におけるエネルギー消費構造の変化と温室効果ガス排出量の可能性について検討を行った。本試算によると、政府が示している2020年のCO2排出量の削減目標の達成は、少なくとも家庭用においては厳しいという結果となっている。また、後述する家庭用市場の小規模分散化という市場構成そのもののも変化にも注意すべきと考えられる。このような状況にあって、今後のCO2排出量削減を推進する上で留意すべき点について考察する。

＜バックキャスティングによる計画の限界＞

温暖化対策を推進する上で、先進国が果たすべき役割と責任は重く、高い削減目標を掲げ温暖化対策を実施することは重要である。一方で、削減目標を検討する際には、費用面も含め、計画する対策の一つ一つの実行可能性について吟味することが必要である。今回の試算では可能な範囲での実行可能性を検討した結果、政府の削減目標を下回る結果となっている。目標を定め、これを達成するための対策を積み上げることは必要であるが、積み上げた対策の実行可能性を再度確認し、将来の方針や計画をより確実なものとすることが求められていると考えられる。

＜市場分散化への対応＞

我が国の家庭用エネルギー市場には今後大きな変化が予想される。これは、今まで主たる市場と考えられてきた標準世帯の割合が減少し、単身、夫婦のみなど少人数世帯が増加するとともに、高齢化と集合化が進むことにより、家庭用市場の小規模分散化が顕著になる点である。この傾向はこれまでも指摘されてきた点であるが、人口や世帯数が増加する過程では、分散化よりも全体のパイが拡大する影響が強く、過去のビジネスモデルを微修正することで市場の変化にある程度対応可能であったと見られる。しかし人口、世帯数が減少に転じることで、将来は小規模分散化に正面から対応せざるを得なくなると考えられる。

このことは将来の計画を立案する上で厄介な問題を提起することになる。つまり、マクロな視点で将来推計を行っているのでは評価することに限界が生じ、有効な計画を検討することに支障をきたすのではないかという懸念である。

例えば、増大する高齢単身者が高効率機器を積極的に選択するであろうか。少なくとも若年層とは選択が異なるのであれば、高効率機器の導入方策も異なる手法を考える必要がある。特に、家電製品や給湯機器など、既に買い換え市場が中心である設備機器を高効率化するには、受容可能かつ十分検討した上で規制的手法及び市場変革、意識変革など多角的な取り組みが必要になる。同時に、今後拡大すると考えられる情報機器のエネルギー消費への対応も検討する必要がある。

将来の計画を立案する場合、少なくとも、住宅や世帯類型別の検討が必要であり、場合によっては地域別の検討も求められる。一方で、市場をセグメントして検討するには膨大な基礎データが必要になるが、残念ながら我が国はこのような詳細なデータ整備が遅れている。こうしたデータベースを整備しつつ、高効率機器や再生可能エネルギー設備の普及について現実的なロードマップを策定することも重要な課題である。
＜ファイナンスの充実＞

高効率機器・住宅、再生可能エネルギー設備は一般的に割高であることが普及阻害要因の第一にあげられる。加えて、通常投資回収年数も長い。家庭の場合、投資回収という概念で市場を牽引するには限界がある。つまり、明らかに短期回収が可能な場合を除き、初期コストと投資回収を同一レベルで冷静に判断することを求めるため限界があり、第一に初期コスト軽減が重要で、次に光熱費の削減が求められる。一方で賃貸住宅のように、家主と店子の利害が一致しない場合の省エネルギー投資は進みにくい。

初期コストをファイナンスにより軽減するスキームは低金利ローン、補助金、減税など様々なプログラムが実施され、我が国でもエコポイントが導入された。これらの既存スキームに加え、さらに充実したファイナンスの提供が求められている。例えば、米国ではユーティリティーが初期コストを負担し、料金に上乗せして投資回収する On Bill Financing や、地方政府が投資し固定資産税に上乗せして回収する仕組みが実施されている。このプログラムの特徴は初期コスト負担を大幅に減少することと、店子が返済することから、所謂オーナー・テナント問題が生じない点にある。未だ十分に成功しているとは言えないが、ファイナンスのオプションを増やし、柔軟に対応することが求められる。

＜ゼロエネルギーハウス＞

ビルの省エネルギーに関する欧州指令（EPBD）では、2020 年までにニアリー ZEH（ゼロ・エネルギー・ハウス）を実現することが盛り込まれ、EU 加盟国でもこれが盛り込まれるようになった。我が国でもエネルギー基本計画（H22 年 6 月 18 日閣議決定）に ZEH の普及に関する文言が織り込まれている。つまり ZEH は先進国の CO2 排出削減対策の潮流の一つとして認識されている重要課題である。ZEH が実現すれば家庭用での対策は、少なくとも新築住宅では完結することになり、究極の対策であるって、実現するには多くの困難を伴うものと考えられる。従って、ZEH を実現するための地に足のついたロードマップを示し、官民関係者で共有していくことが求められる。
2020年の家庭分野における
二酸化炭素削減可能性に関する調査

2010 年 11 月発行
21 世紀政策研究所

東京都千代田区大手町 1−3−2
経団連会館 19 階 〒100−0004
TEL: 03−6741−0901
FAX: 03−6741−0902

ホームページ：http://www.21ppi.org/